modelparameters.sympy.diffgeom package¶
Submodules¶
modelparameters.sympy.diffgeom.diffgeom module¶
- class modelparameters.sympy.diffgeom.diffgeom.BaseCovarDerivativeOp(*args)[source]¶
Bases:
Expr
Covariant derivative operator with respect to a base vector.
Examples
>>> from .rn import R2, R2_r >>> from ..diffgeom import BaseCovarDerivativeOp >>> from ..diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) >>> ch [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch) >>> cvd(R2.x) 1 >>> cvd(R2.x*R2.e_x) e_x
- default_assumptions = {}¶
- class modelparameters.sympy.diffgeom.diffgeom.BaseScalarField(coord_sys, index)[source]¶
Bases:
Expr
Base Scalar Field over a Manifold for a given Coordinate System.
A scalar field takes a point as an argument and returns a scalar.
A base scalar field of a coordinate system takes a point and returns one of the coordinates of that point in the coordinate system in question.
To define a scalar field you need to choose the coordinate system and the index of the coordinate.
The use of the scalar field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use unappropriate coordinate systems.
You can build complicated scalar fields by just building up SymPy expressions containing
BaseScalarField
instances.Examples
Define boilerplate Manifold, Patch and coordinate systems:
>>> from .. import symbols, sin, cos, pi, Function >>> from ..diffgeom import ( ... Manifold, Patch, CoordSystem, Point, BaseScalarField) >>> r0, theta0 = symbols('r0, theta0') >>> m = Manifold('M', 2) >>> p = Patch('P', m) >>> rect = CoordSystem('rect', p) >>> polar = CoordSystem('polar', p) >>> polar.connect_to(rect, [r0, theta0], [r0*cos(theta0), r0*sin(theta0)])
Point to be used as an argument for the filed:
>>> point = polar.point([r0, 0])
Examples of fields:
>>> fx = BaseScalarField(rect, 0) >>> fy = BaseScalarField(rect, 1) >>> (fx**2+fy**2).rcall(point) r0**2
>>> g = Function('g') >>> ftheta = BaseScalarField(polar, 1) >>> fg = g(ftheta-pi) >>> fg.rcall(point) g(-pi)
- default_assumptions = {'commutative': True}¶
- doit()[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- free_symbols = {}¶
- is_commutative = True¶
- class modelparameters.sympy.diffgeom.diffgeom.BaseVectorField(coord_sys, index)[source]¶
Bases:
Expr
Vector Field over a Manifold.
A vector field is an operator taking a scalar field and returning a directional derivative (which is also a scalar field).
A base vector field is the same type of operator, however the derivation is specifically done with respect to a chosen coordinate.
To define a base vector field you need to choose the coordinate system and the index of the coordinate.
The use of the vector field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use unappropriate coordinate systems.
Examples
Use the predefined R2 manifold, setup some boilerplate.
>>> from .. import symbols, pi, Function >>> from .rn import R2, R2_p, R2_r >>> from ..diffgeom import BaseVectorField >>> from .. import pprint >>> x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0')
Points to be used as arguments for the field:
>>> point_p = R2_p.point([r0, theta0]) >>> point_r = R2_r.point([x0, y0])
Scalar field to operate on:
>>> g = Function('g') >>> s_field = g(R2.x, R2.y) >>> s_field.rcall(point_r) g(x0, y0) >>> s_field.rcall(point_p) g(r0*cos(theta0), r0*sin(theta0))
Vector field:
>>> v = BaseVectorField(R2_r, 1) >>> pprint(v(s_field)) / d \| |-----(g(x, xi_2))|| \dxi_2 /|xi_2=y >>> pprint(v(s_field).rcall(point_r).doit()) d ---(g(x0, y0)) dy0 >>> pprint(v(s_field).rcall(point_p).doit()) / d \| |-----(g(r0*cos(theta0), xi_2))|| \dxi_2 /|xi_2=r0*sin(theta0)
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- class modelparameters.sympy.diffgeom.diffgeom.Commutator(v1, v2)[source]¶
Bases:
Expr
Commutator of two vector fields.
The commutator of two vector fields v_1 and v_2 is defined as the vector field [v_1, v_2] that evaluated on each scalar field f is equal to v_1(v_2(f)) - v_2(v_1(f)).
Examples
Use the predefined R2 manifold, setup some boilerplate.
>>> from .rn import R2 >>> from ..diffgeom import Commutator >>> from .. import pprint >>> from ..simplify import simplify
Vector fields:
>>> e_x, e_y, e_r = R2.e_x, R2.e_y, R2.e_r >>> c_xy = Commutator(e_x, e_y) >>> c_xr = Commutator(e_x, e_r) >>> c_xy 0
Unfortunately, the current code is not able to compute everything:
>>> c_xr Commutator(e_x, e_r)
>>> simplify(c_xr(R2.y**2).doit()) -2*cos(theta)*y**2/(x**2 + y**2)
- default_assumptions = {}¶
- class modelparameters.sympy.diffgeom.diffgeom.CoordSystem(name, patch, names=None)[source]¶
Bases:
Basic
Contains all coordinate transformation logic.
Examples
Define a Manifold and a Patch, and then define two coord systems on that patch:
>>> from .. import symbols, sin, cos, pi >>> from ..diffgeom import Manifold, Patch, CoordSystem >>> from ..simplify import simplify >>> r, theta = symbols('r, theta') >>> m = Manifold('M', 2) >>> patch = Patch('P', m) >>> rect = CoordSystem('rect', patch) >>> polar = CoordSystem('polar', patch) >>> rect in patch.coord_systems True
Connect the coordinate systems. An inverse transformation is automatically found by
solve
when possible:>>> polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)]) >>> polar.coord_tuple_transform_to(rect, [0, 2]) Matrix([ [0], [0]]) >>> polar.coord_tuple_transform_to(rect, [2, pi/2]) Matrix([ [0], [2]]) >>> rect.coord_tuple_transform_to(polar, [1, 1]).applyfunc(simplify) Matrix([ [sqrt(2)], [ pi/4]])
Calculate the jacobian of the polar to cartesian transformation:
>>> polar.jacobian(rect, [r, theta]) Matrix([ [cos(theta), -r*sin(theta)], [sin(theta), r*cos(theta)]])
Define a point using coordinates in one of the coordinate systems:
>>> p = polar.point([1, 3*pi/4]) >>> rect.point_to_coords(p) Matrix([ [-sqrt(2)/2], [ sqrt(2)/2]])
Define a basis scalar field (i.e. a coordinate function), that takes a point and returns its coordinates. It is an instance of
BaseScalarField
.>>> rect.coord_function(0)(p) -sqrt(2)/2 >>> rect.coord_function(1)(p) sqrt(2)/2
Define a basis vector field (i.e. a unit vector field along the coordinate line). Vectors are also differential operators on scalar fields. It is an instance of
BaseVectorField
.>>> v_x = rect.base_vector(0) >>> x = rect.coord_function(0) >>> v_x(x) 1 >>> v_x(v_x(x)) 0
Define a basis oneform field:
>>> dx = rect.base_oneform(0) >>> dx(v_x) 1
If you provide a list of names the fields will print nicely: - without provided names:
>>> x, v_x, dx (rect_0, e_rect_0, drect_0)
with provided names
>>> rect = CoordSystem('rect', patch, ['x', 'y']) >>> rect.coord_function(0), rect.base_vector(0), rect.base_oneform(0) (x, e_x, dx)
- base_oneform(coord_index)[source]¶
Return a basis 1-form field.
The basis one-form field for this coordinate system. It is also an operator on vector fields.
See the docstring of
CoordSystem
for examples.
- base_oneforms()[source]¶
Returns a list of all base oneforms.
For more details see the
base_oneform
method of this class.
- base_vector(coord_index)[source]¶
Return a basis vector field.
The basis vector field for this coordinate system. It is also an operator on scalar fields.
See the docstring of
CoordSystem
for examples.
- base_vectors()[source]¶
Returns a list of all base vectors.
For more details see the
base_vector
method of this class.
- connect_to(to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False)[source]¶
Register the transformation used to switch to another coordinate system.
- Parameters:
to_sys – another instance of
CoordSystem
from_coords – list of symbols in terms of which
to_exprs
is givento_exprs – list of the expressions of the new coordinate tuple
inverse – try to deduce and register the inverse transformation
fill_in_gaps – try to deduce other transformation that are made possible by composing the present transformation with other already registered transformation
- coord_function(coord_index)[source]¶
Return a
BaseScalarField
that takes a point and returns one of the coords.Takes a point and returns its coordinate in this coordinate system.
See the docstring of
CoordSystem
for examples.
- coord_functions()[source]¶
Returns a list of all coordinate functions.
For more details see the
coord_function
method of this class.
- coord_tuple_transform_to(to_sys, coords)[source]¶
Transform
coords
to coord systemto_sys
.See the docstring of
CoordSystem
for examples.
- default_assumptions = {}¶
- property dim¶
- class modelparameters.sympy.diffgeom.diffgeom.CovarDerivativeOp(*args)[source]¶
Bases:
Expr
Covariant derivative operator.
Examples
>>> from .rn import R2 >>> from ..diffgeom import CovarDerivativeOp >>> from ..diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) >>> ch [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> cvd = CovarDerivativeOp(R2.x*R2.e_x, ch) >>> cvd(R2.x) x >>> cvd(R2.x*R2.e_x) x*e_x
- default_assumptions = {}¶
- class modelparameters.sympy.diffgeom.diffgeom.Differential(form_field)[source]¶
Bases:
Expr
Return the differential (exterior derivative) of a form field.
The differential of a form (i.e. the exterior derivative) has a complicated definition in the general case.
The differential df of the 0-form f is defined for any vector field v as df(v) = v(f).
Examples
Use the predefined R2 manifold, setup some boilerplate.
>>> from .. import Function >>> from .rn import R2 >>> from ..diffgeom import Differential >>> from .. import pprint
Scalar field (0-forms):
>>> g = Function('g') >>> s_field = g(R2.x, R2.y)
Vector fields:
>>> e_x, e_y, = R2.e_x, R2.e_y
Differentials:
>>> dg = Differential(s_field) >>> dg d(g(x, y)) >>> pprint(dg(e_x)) / d \| |-----(g(xi_1, y))|| \dxi_1 /|xi_1=x >>> pprint(dg(e_y)) / d \| |-----(g(x, xi_2))|| \dxi_2 /|xi_2=y
Applying the exterior derivative operator twice always results in:
>>> Differential(dg) 0
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- class modelparameters.sympy.diffgeom.diffgeom.LieDerivative(v_field, expr)[source]¶
Bases:
Expr
Lie derivative with respect to a vector field.
The transport operator that defines the Lie derivative is the pushforward of the field to be derived along the integral curve of the field with respect to which one derives.
Examples
>>> from ..diffgeom import (LieDerivative, TensorProduct) >>> from .rn import R2 >>> LieDerivative(R2.e_x, R2.y) 0 >>> LieDerivative(R2.e_x, R2.x) 1 >>> LieDerivative(R2.e_x, R2.e_x) 0
The Lie derivative of a tensor field by another tensor field is equal to their commutator:
>>> LieDerivative(R2.e_x, R2.e_r) Commutator(e_x, e_r) >>> LieDerivative(R2.e_x + R2.e_y, R2.x) 1 >>> tp = TensorProduct(R2.dx, R2.dy) >>> LieDerivative(R2.e_x, tp) LieDerivative(e_x, TensorProduct(dx, dy)) >>> LieDerivative(R2.e_x, tp).doit() LieDerivative(e_x, TensorProduct(dx, dy))
- default_assumptions = {}¶
- class modelparameters.sympy.diffgeom.diffgeom.Manifold(name, dim)[source]¶
Bases:
Basic
Object representing a mathematical manifold.
The only role that this object plays is to keep a list of all patches defined on the manifold. It does not provide any means to study the topological characteristics of the manifold that it represents.
- default_assumptions = {}¶
- class modelparameters.sympy.diffgeom.diffgeom.Patch(name, manifold)[source]¶
Bases:
Basic
Object representing a patch on a manifold.
On a manifold one can have many patches that do not always include the whole manifold. On these patches coordinate charts can be defined that permit the parameterization of any point on the patch in terms of a tuple of real numbers (the coordinates).
This object serves as a container/parent for all coordinate system charts that can be defined on the patch it represents.
Examples
Define a Manifold and a Patch on that Manifold:
>>> from ..diffgeom import Manifold, Patch >>> m = Manifold('M', 3) >>> p = Patch('P', m) >>> p in m.patches True
- default_assumptions = {}¶
- property dim¶
- class modelparameters.sympy.diffgeom.diffgeom.Point(*args)[source]¶
Bases:
Basic
Point in a Manifold object.
To define a point you must supply coordinates and a coordinate system.
The usage of this object after its definition is independent of the coordinate system that was used in order to define it, however due to limitations in the simplification routines you can arrive at complicated expressions if you use inappropriate coordinate systems.
Examples
Define the boilerplate Manifold, Patch and coordinate systems:
>>> from .. import symbols, sin, cos, pi >>> from ..diffgeom import ( ... Manifold, Patch, CoordSystem, Point) >>> r, theta = symbols('r, theta') >>> m = Manifold('M', 2) >>> p = Patch('P', m) >>> rect = CoordSystem('rect', p) >>> polar = CoordSystem('polar', p) >>> polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)])
Define a point using coordinates from one of the coordinate systems:
>>> p = Point(polar, [r, 3*pi/4]) >>> p.coords() Matrix([ [ r], [3*pi/4]]) >>> p.coords(rect) Matrix([ [-sqrt(2)*r/2], [ sqrt(2)*r/2]])
- coords(to_sys=None)[source]¶
Coordinates of the point in a given coordinate system.
If
to_sys
isNone
it returns the coordinates in the system in which the point was defined.
- default_assumptions = {}¶
- property free_symbols¶
Return from the atoms of self those which are free symbols.
For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method.
Any other method that uses bound variables should implement a free_symbols method.
- class modelparameters.sympy.diffgeom.diffgeom.TensorProduct(*args)[source]¶
Bases:
Expr
Tensor product of forms.
The tensor product permits the creation of multilinear functionals (i.e. higher order tensors) out of lower order fields (e.g. 1-forms and vector fields). However, the higher tensors thus created lack the interesting features provided by the other type of product, the wedge product, namely they are not antisymmetric and hence are not form fields.
Examples
Use the predefined R2 manifold, setup some boilerplate.
>>> from .. import Function >>> from .rn import R2 >>> from ..diffgeom import TensorProduct >>> from .. import pprint
>>> TensorProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) 1 >>> TensorProduct(R2.dx, R2.dy)(R2.e_y, R2.e_x) 0 >>> TensorProduct(R2.dx, R2.x*R2.dy)(R2.x*R2.e_x, R2.e_y) x**2 >>> TensorProduct(R2.e_x, R2.e_y)(R2.x**2, R2.y**2) 4*x*y >>> TensorProduct(R2.e_y, R2.dx)(R2.y) dx
You can nest tensor products.
>>> tp1 = TensorProduct(R2.dx, R2.dy) >>> TensorProduct(tp1, R2.dx)(R2.e_x, R2.e_y, R2.e_x) 1
You can make partial contraction for instance when ‘raising an index’. Putting
None
in the second argument ofrcall
means that the respective position in the tensor product is left as it is.>>> TP = TensorProduct >>> metric = TP(R2.dx, R2.dx) + 3*TP(R2.dy, R2.dy) >>> metric.rcall(R2.e_y, None) 3*dy
Or automatically pad the args with
None
without specifying them.>>> metric.rcall(R2.e_y) 3*dy
- default_assumptions = {}¶
- class modelparameters.sympy.diffgeom.diffgeom.WedgeProduct(*args)[source]¶
Bases:
TensorProduct
Wedge product of forms.
In the context of integration only completely antisymmetric forms make sense. The wedge product permits the creation of such forms.
Examples
Use the predefined R2 manifold, setup some boilerplate.
>>> from .. import Function >>> from .rn import R2 >>> from ..diffgeom import WedgeProduct >>> from .. import pprint
>>> WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) 1 >>> WedgeProduct(R2.dx, R2.dy)(R2.e_y, R2.e_x) -1 >>> WedgeProduct(R2.dx, R2.x*R2.dy)(R2.x*R2.e_x, R2.e_y) x**2 >>> WedgeProduct(R2.e_x,R2.e_y)(R2.y,None) -e_x
You can nest wedge products.
>>> wp1 = WedgeProduct(R2.dx, R2.dy) >>> WedgeProduct(wp1, R2.dx)(R2.e_x, R2.e_y, R2.e_x) 0
- default_assumptions = {}¶
- modelparameters.sympy.diffgeom.diffgeom.contravariant_order(expr, _strict=False)[source]¶
Return the contravariant order of an expression.
Examples
>>> from ..diffgeom import contravariant_order >>> from .rn import R2 >>> from ..abc import a >>> contravariant_order(a) 0 >>> contravariant_order(a*R2.x + 2) 0 >>> contravariant_order(a*R2.x*R2.e_y + R2.e_x) 1
- modelparameters.sympy.diffgeom.diffgeom.covariant_order(expr, _strict=False)[source]¶
Return the covariant order of an expression.
Examples
>>> from ..diffgeom import covariant_order >>> from .rn import R2 >>> from ..abc import a >>> covariant_order(a) 0 >>> covariant_order(a*R2.x + 2) 0 >>> covariant_order(a*R2.x*R2.dy + R2.dx) 1
- modelparameters.sympy.diffgeom.diffgeom.intcurve_diffequ(vector_field, param, start_point, coord_sys=None)[source]¶
Return the differential equation for an integral curve of the field.
Integral curve is a function gamma taking a parameter in R to a point in the manifold. It verifies the equation:
V(f)big(gamma(t)big) = frac{d}{dt}fbig(gamma(t)big)
where the given
vector_field
is denoted as V. This holds for any value t for the parameter and any scalar field f.This function returns the differential equation of gamma(t) in terms of the coordinate system
coord_sys
. The equations and expansions are necessarily done in coordinate-system-dependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold).See also
- Parameters:
vector_field – the vector field for which an integral curve will be given
param – the argument of the function gamma from R to the curve
start_point – the point which coresponds to gamma(0)
coord_sys – the coordinate system in which to give the equations
- Return type:
a tuple of (equations, initial conditions)
Examples
Use the predefined R2 manifold:
>>> from ..abc import t >>> from .rn import R2, R2_p, R2_r >>> from ..diffgeom import intcurve_diffequ
Specify a starting point and a vector field:
>>> start_point = R2_r.point([0, 1]) >>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
Get the equation:
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point) >>> equations [f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)] >>> init_cond [f_0(0), f_1(0) - 1]
The series in the polar coordinate system:
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) >>> equations [Derivative(f_0(t), t), Derivative(f_1(t), t) - 1] >>> init_cond [f_0(0) - 1, f_1(0) - pi/2]
- modelparameters.sympy.diffgeom.diffgeom.intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False)[source]¶
Return the series expansion for an integral curve of the field.
Integral curve is a function gamma taking a parameter in R to a point in the manifold. It verifies the equation:
V(f)big(gamma(t)big) = frac{d}{dt}fbig(gamma(t)big)
where the given
vector_field
is denoted as V. This holds for any value t for the parameter and any scalar field f.This equation can also be decomposed of a basis of coordinate functions
V(f_i)big(gamma(t)big) = frac{d}{dt}f_ibig(gamma(t)big) quad forall i
This function returns a series expansion of gamma(t) in terms of the coordinate system
coord_sys
. The equations and expansions are necessarily done in coordinate-system-dependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold).See also
- Parameters:
vector_field – the vector field for which an integral curve will be given
param – the argument of the function gamma from R to the curve
start_point – the point which coresponds to gamma(0)
n – the order to which to expand
coord_sys – the coordinate system in which to expand coeffs (default False) - if True return a list of elements of the expansion
Examples
Use the predefined R2 manifold:
>>> from ..abc import t, x, y >>> from .rn import R2, R2_p, R2_r >>> from ..diffgeom import intcurve_series
Specify a starting point and a vector field:
>>> start_point = R2_r.point([x, y]) >>> vector_field = R2_r.e_x
Calculate the series:
>>> intcurve_series(vector_field, t, start_point, n=3) Matrix([ [t + x], [ y]])
Or get the elements of the expansion in a list:
>>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True) >>> series[0] Matrix([ [x], [y]]) >>> series[1] Matrix([ [t], [0]]) >>> series[2] Matrix([ [0], [0]])
The series in the polar coordinate system:
>>> series = intcurve_series(vector_field, t, start_point, ... n=3, coord_sys=R2_p, coeffs=True) >>> series[0] Matrix([ [sqrt(x**2 + y**2)], [ atan2(y, x)]]) >>> series[1] Matrix([ [t*x/sqrt(x**2 + y**2)], [ -t*y/(x**2 + y**2)]]) >>> series[2] Matrix([ [t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2], [ t**2*x*y/(x**2 + y**2)**2]])
- modelparameters.sympy.diffgeom.diffgeom.metric_to_Christoffel_1st(expr)[source]¶
Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of first kind that represents the Levi-Civita connection for the given metric.
Examples
>>> from .rn import R2 >>> from ..diffgeom import metric_to_Christoffel_1st, TensorProduct >>> TP = TensorProduct >>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]]
- modelparameters.sympy.diffgeom.diffgeom.metric_to_Christoffel_2nd(expr)[source]¶
Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of second kind that represents the Levi-Civita connection for the given metric.
Examples
>>> from .rn import R2 >>> from ..diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]]
- modelparameters.sympy.diffgeom.diffgeom.metric_to_Ricci_components(expr)[source]¶
Return the components of the Ricci tensor expressed in a given basis.
Given a metric it calculates the components of the Ricci tensor in the canonical basis of the coordinate system in which the metric expression is given.
Examples
>>> from .. import pprint, exp >>> from .rn import R2 >>> from ..diffgeom import metric_to_Ricci_components, TensorProduct >>> TP = TensorProduct >>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[0, 0], [0, 0]]
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + R2.r**2*TP(R2.dtheta, R2.dtheta) >>> non_trivial_metric exp(2*r)*TensorProduct(dr, dr) + r**2*TensorProduct(dtheta, dtheta) >>> metric_to_Ricci_components(non_trivial_metric) [[1/r, 0], [0, exp(-2*r)*r]]
- modelparameters.sympy.diffgeom.diffgeom.metric_to_Riemann_components(expr)[source]¶
Return the components of the Riemann tensor expressed in a given basis.
Given a metric it calculates the components of the Riemann tensor in the canonical basis of the coordinate system in which the metric expression is given.
Examples
>>> from .. import pprint, exp >>> from .rn import R2 >>> from ..diffgeom import metric_to_Riemann_components, TensorProduct >>> TP = TensorProduct >>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + R2.r**2*TP(R2.dtheta, R2.dtheta) >>> non_trivial_metric exp(2*r)*TensorProduct(dr, dr) + r**2*TensorProduct(dtheta, dtheta) >>> riemann = metric_to_Riemann_components(non_trivial_metric) >>> riemann[0, :, :, :] [[[0, 0], [0, 0]], [[0, exp(-2*r)*r], [-exp(-2*r)*r, 0]]] >>> riemann[1, :, :, :] [[[0, -1/r], [1/r, 0]], [[0, 0], [0, 0]]]
- modelparameters.sympy.diffgeom.diffgeom.twoform_to_matrix(expr)[source]¶
Return the matrix representing the twoform.
For the twoform w return the matrix M such that M[i,j]=w(e_i, e_j), where e_i is the i-th base vector field for the coordinate system in which the expression of w is given.
Examples
>>> from .rn import R2 >>> from ..diffgeom import twoform_to_matrix, TensorProduct >>> TP = TensorProduct >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) Matrix([ [1, 0], [0, 1]]) >>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) Matrix([ [x, 0], [0, 1]]) >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2) Matrix([ [ 1, 0], [-1/2, 1]])
- modelparameters.sympy.diffgeom.diffgeom.vectors_in_basis(expr, to_sys)[source]¶
Transform all base vectors in base vectors of a specified coord basis.
While the new base vectors are in the new coordinate system basis, any coefficients are kept in the old system.
Examples
>>> from ..diffgeom import vectors_in_basis >>> from .rn import R2_r, R2_p >>> vectors_in_basis(R2_r.e_x, R2_p) -y*e_theta/(x**2 + y**2) + x*e_r/sqrt(x**2 + y**2) >>> vectors_in_basis(R2_p.e_r, R2_r) sin(theta)*e_y + cos(theta)*e_x
modelparameters.sympy.diffgeom.rn module¶
Predefined R^n manifolds together with common coord. systems.
Coordinate systems are predefined as well as the transformation laws between them.
Coordinate functions can be accessed as attributes of the manifold (eg R2.x), as attributes of the coordinate systems (eg R2_r.x and R2_p.theta), or by using the usual coord_sys.coord_function(index, name) interface.