modelparameters.sympy.functions.special package¶
Submodules¶
modelparameters.sympy.functions.special.bessel module¶
- class modelparameters.sympy.functions.special.bessel.AiryBase(*args)[source]¶
Bases:
FunctionAbstract base class for Airy functions.
This class is meant to reduce code duplication.
- as_real_imag(deep=True, **hints)[source]¶
Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method can’t be confused with re() and im() functions, which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function.
>>> from .. import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag() (x, y)
>>> from ..abc import z, w
>>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z))
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.bessel.BesselBase(nu, z)[source]¶
Bases:
FunctionAbstract base class for bessel-type functions.
This class is meant to reduce code duplication. All Bessel type functions can 1) be differentiated, and the derivatives expressed in terms of similar functions and 2) be rewritten in terms of other bessel-type functions.
Here “bessel-type functions” are assumed to have one complex parameter.
To use this base class, define class attributes
_aand_bsuch that2*F_n' = -_a*F_{n+1} + b*F_{n-1}.- property argument¶
The argument of the bessel-type function.
- default_assumptions = {}¶
- classmethod eval(nu, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- property order¶
The order of the bessel-type function.
- class modelparameters.sympy.functions.special.bessel.SphericalBesselBase(nu, z)[source]¶
Bases:
BesselBaseBase class for spherical Bessel functions.
These are thin wrappers around ordinary Bessel functions, since spherical Bessel functions differ from the ordinary ones just by a slight change in order.
To use this class, define the
_rewriteand_expandmethods.- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.bessel.SphericalHankelBase(nu, z)[source]¶
Bases:
SphericalBesselBase- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.bessel.airyai(arg)[source]¶
Bases:
AiryBaseThe Airy function operatorname{Ai} of the first kind.
The Airy function operatorname{Ai}(z) is defined to be the function satisfying Airy’s differential equation
\[\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.\]Equivalently, for real z
\[\operatorname{Ai}(z) := \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.\]Examples
Create an Airy function object:
>>> from ... import airyai >>> from ...abc import z
>>> airyai(z) airyai(z)
Several special values are known:
>>> airyai(0) 3**(1/3)/(3*gamma(2/3)) >>> from ... import oo >>> airyai(oo) 0 >>> airyai(-oo) 0
The Airy function obeys the mirror symmetry:
>>> from ... import conjugate >>> conjugate(airyai(z)) airyai(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(airyai(z), z) airyaiprime(z) >>> diff(airyai(z), z, 2) z*airyai(z)
Series expansion is also supported:
>>> from ... import series >>> series(airyai(z), z, 0, 3) 3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:
>>> airyai(-2).evalf(50) 0.22740742820168557599192443603787379946077222541710
Rewrite Ai(z) in terms of hypergeometric functions:
>>> from ... import hyper >>> airyai(z).rewrite(hyper) -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See also
airybiAiry function of the second kind.
airyaiprimeDerivative of the Airy function of the first kind.
airybiprimeDerivative of the Airy function of the second kind.
References
- default_assumptions = {}¶
- classmethod eval(arg)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- nargs = {1}¶
- static taylor_term(n, x, *previous_terms)[source]¶
General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.
- unbranched = True¶
- class modelparameters.sympy.functions.special.bessel.airyaiprime(arg)[source]¶
Bases:
AiryBaseThe derivative operatorname{Ai}^prime of the Airy function of the first kind.
The Airy function operatorname{Ai}^prime(z) is defined to be the function
\[\operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.\]Examples
Create an Airy function object:
>>> from ... import airyaiprime >>> from ...abc import z
>>> airyaiprime(z) airyaiprime(z)
Several special values are known:
>>> airyaiprime(0) -3**(2/3)/(3*gamma(1/3)) >>> from ... import oo >>> airyaiprime(oo) 0
The Airy function obeys the mirror symmetry:
>>> from ... import conjugate >>> conjugate(airyaiprime(z)) airyaiprime(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(airyaiprime(z), z) z*airyai(z) >>> diff(airyaiprime(z), z, 2) z*airyaiprime(z) + airyai(z)
Series expansion is also supported:
>>> from ... import series >>> series(airyaiprime(z), z, 0, 3) -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:
>>> airyaiprime(-2).evalf(50) 0.61825902074169104140626429133247528291577794512415
Rewrite Ai’(z) in terms of hypergeometric functions:
>>> from ... import hyper >>> airyaiprime(z).rewrite(hyper) 3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))
See also
airyaiAiry function of the first kind.
airybiAiry function of the second kind.
airybiprimeDerivative of the Airy function of the second kind.
References
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(arg)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- nargs = {1}¶
- unbranched = True¶
- class modelparameters.sympy.functions.special.bessel.airybi(arg)[source]¶
Bases:
AiryBaseThe Airy function operatorname{Bi} of the second kind.
The Airy function operatorname{Bi}(z) is defined to be the function satisfying Airy’s differential equation
\[\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.\]Equivalently, for real z
\[\operatorname{Bi}(z) := \frac{1}{\pi} \int_0^\infty \exp\left(-\frac{t^3}{3} + z t\right) + \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.\]Examples
Create an Airy function object:
>>> from ... import airybi >>> from ...abc import z
>>> airybi(z) airybi(z)
Several special values are known:
>>> airybi(0) 3**(5/6)/(3*gamma(2/3)) >>> from ... import oo >>> airybi(oo) oo >>> airybi(-oo) 0
The Airy function obeys the mirror symmetry:
>>> from ... import conjugate >>> conjugate(airybi(z)) airybi(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(airybi(z), z) airybiprime(z) >>> diff(airybi(z), z, 2) z*airybi(z)
Series expansion is also supported:
>>> from ... import series >>> series(airybi(z), z, 0, 3) 3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:
>>> airybi(-2).evalf(50) -0.41230258795639848808323405461146104203453483447240
Rewrite Bi(z) in terms of hypergeometric functions:
>>> from ... import hyper >>> airybi(z).rewrite(hyper) 3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See also
airyaiAiry function of the first kind.
airyaiprimeDerivative of the Airy function of the first kind.
airybiprimeDerivative of the Airy function of the second kind.
References
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(arg)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- nargs = {1}¶
- static taylor_term(n, x, *previous_terms)[source]¶
General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.
- unbranched = True¶
- class modelparameters.sympy.functions.special.bessel.airybiprime(arg)[source]¶
Bases:
AiryBaseThe derivative operatorname{Bi}^prime of the Airy function of the first kind.
The Airy function operatorname{Bi}^prime(z) is defined to be the function
\[\operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.\]Examples
Create an Airy function object:
>>> from ... import airybiprime >>> from ...abc import z
>>> airybiprime(z) airybiprime(z)
Several special values are known:
>>> airybiprime(0) 3**(1/6)/gamma(1/3) >>> from ... import oo >>> airybiprime(oo) oo >>> airybiprime(-oo) 0
The Airy function obeys the mirror symmetry:
>>> from ... import conjugate >>> conjugate(airybiprime(z)) airybiprime(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(airybiprime(z), z) z*airybi(z) >>> diff(airybiprime(z), z, 2) z*airybiprime(z) + airybi(z)
Series expansion is also supported:
>>> from ... import series >>> series(airybiprime(z), z, 0, 3) 3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:
>>> airybiprime(-2).evalf(50) 0.27879516692116952268509756941098324140300059345163
Rewrite Bi’(z) in terms of hypergeometric functions:
>>> from ... import hyper >>> airybiprime(z).rewrite(hyper) 3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
See also
airyaiAiry function of the first kind.
airybiAiry function of the second kind.
airyaiprimeDerivative of the Airy function of the first kind.
References
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(arg)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- nargs = {1}¶
- unbranched = True¶
- class modelparameters.sympy.functions.special.bessel.besseli(nu, z)[source]¶
Bases:
BesselBaseModified Bessel function of the first kind.
The Bessel I function is a solution to the modified Bessel equation
\[z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.\]It can be defined as
\[I_\nu(z) = i^{-\nu} J_\nu(iz),\]where \(J_\nu(z)\) is the Bessel function of the first kind.
Examples
>>> from ... import besseli >>> from ...abc import z, n >>> besseli(n, z).diff(z) besseli(n - 1, z)/2 + besseli(n + 1, z)/2
References
[1] - default_assumptions = {}¶
- classmethod eval(nu, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.bessel.besselj(nu, z)[source]¶
Bases:
BesselBaseBessel function of the first kind.
The Bessel J function of order nu is defined to be the function satisfying Bessel’s differential equation
\[z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,\]with Laurent expansion
\[J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),\]if \(\nu\) is not a negative integer. If \(\nu=-n \in \mathbb{Z}_{<0}\) is a negative integer, then the definition is
\[J_{-n}(z) = (-1)^n J_n(z).\]Examples
Create a Bessel function object:
>>> from ... import besselj, jn >>> from ...abc import z, n >>> b = besselj(n, z)
Differentiate it:
>>> b.diff(z) besselj(n - 1, z)/2 - besselj(n + 1, z)/2
Rewrite in terms of spherical Bessel functions:
>>> b.rewrite(jn) sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
Access the parameter and argument:
>>> b.order n >>> b.argument z
References
[1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), “Chapter 9”, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1
[3] [4] - default_assumptions = {}¶
- classmethod eval(nu, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.bessel.besselk(nu, z)[source]¶
Bases:
BesselBaseModified Bessel function of the second kind.
The Bessel K function of order \(\nu\) is defined as
\[K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2} \frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},\]where \(I_\mu(z)\) is the modified Bessel function of the first kind.
It is a solution of the modified Bessel equation, and linearly independent from \(Y_\nu\).
Examples
>>> from ... import besselk >>> from ...abc import z, n >>> besselk(n, z).diff(z) -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
References
[1] - default_assumptions = {}¶
- classmethod eval(nu, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.bessel.bessely(nu, z)[source]¶
Bases:
BesselBaseBessel function of the second kind.
The Bessel Y function of order nu is defined as
\[Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu) - J_{-\mu}(z)}{\sin(\pi \mu)},\]where \(J_\mu(z)\) is the Bessel function of the first kind.
It is a solution to Bessel’s equation, and linearly independent from \(J_\nu\).
Examples
>>> from ... import bessely, yn >>> from ...abc import z, n >>> b = bessely(n, z) >>> b.diff(z) bessely(n - 1, z)/2 - bessely(n + 1, z)/2 >>> b.rewrite(yn) sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
References
[1] - default_assumptions = {}¶
- classmethod eval(nu, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.bessel.hankel1(nu, z)[source]¶
Bases:
BesselBaseHankel function of the first kind.
This function is defined as
\[H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),\]where \(J_\nu(z)\) is the Bessel function of the first kind, and \(Y_\nu(z)\) is the Bessel function of the second kind.
It is a solution to Bessel’s equation.
Examples
>>> from ... import hankel1 >>> from ...abc import z, n >>> hankel1(n, z).diff(z) hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
References
[1] - default_assumptions = {}¶
- class modelparameters.sympy.functions.special.bessel.hankel2(nu, z)[source]¶
Bases:
BesselBaseHankel function of the second kind.
This function is defined as
\[H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),\]where \(J_\nu(z)\) is the Bessel function of the first kind, and \(Y_\nu(z)\) is the Bessel function of the second kind.
It is a solution to Bessel’s equation, and linearly independent from \(H_\nu^{(1)}\).
Examples
>>> from ... import hankel2 >>> from ...abc import z, n >>> hankel2(n, z).diff(z) hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
References
[1] - default_assumptions = {}¶
- class modelparameters.sympy.functions.special.bessel.hn1(nu, z)[source]¶
Bases:
SphericalHankelBaseSpherical Hankel function of the first kind.
This function is defined as
\[h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),\]where \(j_\nu(z)\) and \(y_\nu(z)\) are the spherical Bessel function of the first and second kinds.
For integral orders \(n\), \(h_n^(1)\) is calculated using the formula:
\[h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)\]Examples
>>> from ... import Symbol, hn1, hankel1, expand_func, yn, jn >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(hn1(nu, z))) jn(nu, z) + I*yn(nu, z) >>> print(expand_func(hn1(0, z))) sin(z)/z - I*cos(z)/z >>> print(expand_func(hn1(1, z))) -I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2 >>> hn1(nu, z).rewrite(jn) (-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z) >>> hn1(nu, z).rewrite(yn) (-1)**nu*yn(-nu - 1, z) + I*yn(nu, z) >>> hn1(nu, z).rewrite(hankel1) sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2
References
[1] - default_assumptions = {}¶
- class modelparameters.sympy.functions.special.bessel.hn2(nu, z)[source]¶
Bases:
SphericalHankelBaseSpherical Hankel function of the second kind.
This function is defined as
\[h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),\]where \(j_\nu(z)\) and \(y_\nu(z)\) are the spherical Bessel function of the first and second kinds.
For integral orders \(n\), \(h_n^(2)\) is calculated using the formula:
\[h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)\]Examples
>>> from ... import Symbol, hn2, hankel2, expand_func, jn, yn >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(hn2(nu, z))) jn(nu, z) - I*yn(nu, z) >>> print(expand_func(hn2(0, z))) sin(z)/z + I*cos(z)/z >>> print(expand_func(hn2(1, z))) I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2 >>> hn2(nu, z).rewrite(hankel2) sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2 >>> hn2(nu, z).rewrite(jn) -(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z) >>> hn2(nu, z).rewrite(yn) (-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)
References
[1] - default_assumptions = {}¶
- class modelparameters.sympy.functions.special.bessel.jn(nu, z)[source]¶
Bases:
SphericalBesselBaseSpherical Bessel function of the first kind.
This function is a solution to the spherical Bessel equation
\[z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.\]It can be defined as
\[j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),\]where \(J_\nu(z)\) is the Bessel function of the first kind.
The spherical Bessel functions of integral order are calculated using the formula:
\[j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},\]where the coefficients \(f_n(z)\) are available as
polys.orthopolys.spherical_bessel_fn().Examples
>>> from ... import Symbol, jn, sin, cos, expand_func, besselj, bessely >>> from ... import simplify >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(jn(0, z))) sin(z)/z >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z True >>> expand_func(jn(3, z)) (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z) >>> jn(nu, z).rewrite(besselj) sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2 >>> jn(nu, z).rewrite(bessely) (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2 >>> jn(2, 5.2+0.3j).evalf(20) 0.099419756723640344491 - 0.054525080242173562897*I
References
[1] - default_assumptions = {}¶
- modelparameters.sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)[source]¶
Zeros of the spherical Bessel function of the first kind.
This returns an array of zeros of jn up to the k-th zero.
method = “sympy”: uses
mpmath.besseljzero()method = “scipy”: uses the SciPy’s sph_jn and newton to find all roots, which is faster than computing the zeros using a general numerical solver, but it requires SciPy and only works with low precision floating point numbers. [The function used with method=”sympy” is a recent addition to mpmath, before that a general solver was used.]
Examples
>>> from ... import jn_zeros >>> jn_zeros(2, 4, dps=5) [5.7635, 9.095, 12.323, 15.515]
- class modelparameters.sympy.functions.special.bessel.yn(nu, z)[source]¶
Bases:
SphericalBesselBaseSpherical Bessel function of the second kind.
This function is another solution to the spherical Bessel equation, and linearly independent from \(j_n\). It can be defined as
\[y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),\]where \(Y_\nu(z)\) is the Bessel function of the second kind.
For integral orders \(n\), \(y_n\) is calculated using the formula:
\[y_n(z) = (-1)^{n+1} j_{-n-1}(z)\]Examples
>>> from ... import Symbol, yn, sin, cos, expand_func, besselj, bessely >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(yn(0, z))) -cos(z)/z >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z True >>> yn(nu, z).rewrite(besselj) (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2 >>> yn(nu, z).rewrite(bessely) sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2 >>> yn(2, 5.2+0.3j).evalf(20) 0.18525034196069722536 + 0.014895573969924817587*I
References
[1] - default_assumptions = {}¶
modelparameters.sympy.functions.special.beta_functions module¶
- class modelparameters.sympy.functions.special.beta_functions.beta(x, y)[source]¶
Bases:
FunctionThe beta integral is called the Eulerian integral of the first kind by Legendre:
\[\mathrm{B}(x,y) := \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t.\]Beta function or Euler’s first integral is closely associated with gamma function. The Beta function often used in probability theory and mathematical statistics. It satisfies properties like:
\[\begin{split}\mathrm{B}(a,1) = \frac{1}{a} \\ \mathrm{B}(a,b) = \mathrm{B}(b,a) \\ \mathrm{B}(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}\end{split}\]Therefore for integral values of a and b:
\[\mathrm{B} = \frac{(a-1)! (b-1)!}{(a+b-1)!}\]Examples
>>> from ... import I, pi >>> from ...abc import x,y
The Beta function obeys the mirror symmetry:
>>> from ... import beta >>> from ... import conjugate >>> conjugate(beta(x,y)) beta(conjugate(x), conjugate(y))
Differentiation with respect to both x and y is supported:
>>> from ... import beta >>> from ... import diff >>> diff(beta(x,y), x) (polygamma(0, x) - polygamma(0, x + y))*beta(x, y)
>>> from ... import beta >>> from ... import diff >>> diff(beta(x,y), y) (polygamma(0, y) - polygamma(0, x + y))*beta(x, y)
We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane:
>>> from ... import beta >>> beta(pi,pi).evalf(40) 0.02671848900111377452242355235388489324562
>>> beta(1+I,1+I).evalf(20) -0.2112723729365330143 - 0.7655283165378005676*I
See also
sympy.functions.special.gamma_functions.gammaGamma function.
sympy.functions.special.gamma_functions.uppergammaUpper incomplete gamma function.
sympy.functions.special.gamma_functions.lowergammaLower incomplete gamma function.
sympy.functions.special.gamma_functions.polygammaPolygamma function.
sympy.functions.special.gamma_functions.loggammaLog Gamma function.
sympy.functions.special.gamma_functions.digammaDigamma function.
sympy.functions.special.gamma_functions.trigammaTrigamma function.
References
[1] [2] [3] - default_assumptions = {}¶
- classmethod eval(x, y)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- nargs = {2}¶
- unbranched = True¶
modelparameters.sympy.functions.special.bsplines module¶
- modelparameters.sympy.functions.special.bsplines.bspline_basis(d, knots, n, x, close=True)[source]¶
The n-th B-spline at x of degree d with knots.
B-Splines are piecewise polynomials of degree d [1]_. They are defined on a set of knots, which is a sequence of integers or floats.
The 0th degree splines have a value of one on a single interval:
>>> from ... import bspline_basis >>> from ...abc import x >>> d = 0 >>> knots = range(5) >>> bspline_basis(d, knots, 0, x) Piecewise((1, (x >= 0) & (x <= 1)), (0, True))
For a given
(d, knots)there arelen(knots)-d-1B-splines defined, that are indexed byn(starting at 0).Here is an example of a cubic B-spline:
>>> bspline_basis(3, range(5), 0, x) Piecewise((x**3/6, (x >= 0) & (x < 1)), (-x**3/2 + 2*x**2 - 2*x + 2/3, (x >= 1) & (x < 2)), (x**3/2 - 4*x**2 + 10*x - 22/3, (x >= 2) & (x < 3)), (-x**3/6 + 2*x**2 - 8*x + 32/3, (x >= 3) & (x <= 4)), (0, True))
By repeating knot points, you can introduce discontinuities in the B-splines and their derivatives:
>>> d = 1 >>> knots = [0,0,2,3,4] >>> bspline_basis(d, knots, 0, x) Piecewise((-x/2 + 1, (x >= 0) & (x <= 2)), (0, True))
It is quite time consuming to construct and evaluate B-splines. If you need to evaluate a B-splines many times, it is best to lambdify them first:
>>> from ... import lambdify >>> d = 3 >>> knots = range(10) >>> b0 = bspline_basis(d, knots, 0, x) >>> f = lambdify(x, b0) >>> y = f(0.5)
See also
bsplines_basis_setReferences
[1]
- modelparameters.sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)[source]¶
Return the
len(knots)-d-1B-splines atxof degreedwithknots.This function returns a list of Piecewise polynomials that are the
len(knots)-d-1B-splines of degreedfor the given knots. This function callsbspline_basis(d, knots, n, x)for different values ofn.Examples
>>> from ... import bspline_basis_set >>> from ...abc import x >>> d = 2 >>> knots = range(5) >>> splines = bspline_basis_set(d, knots, x) >>> splines [Piecewise((x**2/2, (x >= 0) & (x < 1)), (-x**2 + 3*x - 3/2, (x >= 1) & (x < 2)), (x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)), (0, True)), Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x < 2)), (-x**2 + 5*x - 11/2, (x >= 2) & (x < 3)), (x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)), (0, True))]
See also
bsplines_basis
modelparameters.sympy.functions.special.delta_functions module¶
- class modelparameters.sympy.functions.special.delta_functions.DiracDelta(arg, k=0)[source]¶
Bases:
FunctionThe DiracDelta function and its derivatives.
DiracDelta is not an ordinary function. It can be rigorously defined either as a distribution or as a measure.
DiracDelta only makes sense in definite integrals, and in particular, integrals of the form
Integral(f(x)*DiracDelta(x - x0), (x, a, b)), where it equalsf(x0)ifa <= x0 <= band0otherwise. Formally, DiracDelta acts in some ways like a function that is0everywhere except at0, but in many ways it also does not. It can often be useful to treat DiracDelta in formal ways, building up and manipulating expressions with delta functions (which may eventually be integrated), but care must be taken to not treat it as a real function. SymPy’soois similar. It only truly makes sense formally in certain contexts (such as integration limits), but SymPy allows its use everywhere, and it tries to be consistent with operations on it (like1/oo), but it is easy to get into trouble and get wrong results ifoois treated too much like a number. Similarly, if DiracDelta is treated too much like a function, it is easy to get wrong or nonsensical results.DiracDelta function has the following properties:
diff(Heaviside(x),x) = DiracDelta(x)integrate(DiracDelta(x-a)*f(x),(x,-oo,oo)) = f(a)andintegrate(DiracDelta(x-a)*f(x),(x,a-e,a+e)) = f(a)DiracDelta(x) = 0for allx != 0DiracDelta(g(x)) = Sum_i(DiracDelta(x-x_i)/abs(g'(x_i)))Wherex_i-s are the roots ofg
Derivatives of
k-th order of DiracDelta have the following property:DiracDelta(x,k) = 0, for allx != 0
Examples
>>> from ... import DiracDelta, diff, pi, Piecewise >>> from ...abc import x, y
>>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(1) 0 >>> DiracDelta(-1) 0 >>> DiracDelta(pi) 0 >>> DiracDelta(x - 4).subs(x, 4) DiracDelta(0) >>> diff(DiracDelta(x)) DiracDelta(x, 1) >>> diff(DiracDelta(x - 1),x,2) DiracDelta(x - 1, 2) >>> diff(DiracDelta(x**2 - 1),x,2) 2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1)) >>> DiracDelta(3*x).is_simple(x) True >>> DiracDelta(x**2).is_simple(x) False >>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y))
References
[1] - default_assumptions = {'commutative': True, 'complex': True, 'hermitian': True, 'imaginary': False, 'real': True}¶
- classmethod eval(arg, k=0)[source]¶
Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object.
The
eval()method is automatically called when theDiracDeltaclass is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words,eval()method is not needed to be called explicitly, it is being called and evaluated once the object is called.Examples
>>> from ... import DiracDelta, S, Subs >>> from ...abc import x
>>> DiracDelta(x) DiracDelta(x)
>>> DiracDelta(x,1) DiracDelta(x, 1)
>>> DiracDelta(1) 0
>>> DiracDelta(5,1) 0
>>> DiracDelta(0) DiracDelta(0)
>>> DiracDelta(-1) 0
>>> DiracDelta(S.NaN) nan
>>> DiracDelta(x).eval(1) 0
>>> DiracDelta(x - 100).subs(x, 5) 0
>>> DiracDelta(x - 100).subs(x, 100) DiracDelta(0)
- fdiff(argindex=1)[source]¶
Returns the first derivative of a DiracDelta Function.
The difference between
diff()andfdiff()is:-diff()is the user-level function andfdiff()is an object method.fdiff()is just a convenience method available in theFunctionclass. It returns the derivative of the function without considering the chain rule.diff(function, x)callsFunction._eval_derivativewhich in turn callsfdiff()internally to compute the derivative of the function.Examples
>>> from ... import DiracDelta, diff >>> from ...abc import x
>>> DiracDelta(x).fdiff() DiracDelta(x, 1)
>>> DiracDelta(x, 1).fdiff() DiracDelta(x, 2)
>>> DiracDelta(x**2 - 1).fdiff() DiracDelta(x**2 - 1, 1)
>>> diff(DiracDelta(x, 1)).fdiff() DiracDelta(x, 3)
- is_commutative = True¶
- is_complex = True¶
- is_hermitian = True¶
- is_imaginary = False¶
- is_real = True¶
- is_simple(self, x)[source]¶
Tells whether the argument(args[0]) of DiracDelta is a linear expression in x.
x can be:
a symbol
Examples
>>> from ... import DiracDelta, cos >>> from ...abc import x, y
>>> DiracDelta(x*y).is_simple(x) True >>> DiracDelta(x*y).is_simple(y) True
>>> DiracDelta(x**2 + x - 2).is_simple(x) False
>>> DiracDelta(cos(x)).is_simple(x) False
See also
simplify,Diracdelta
- class modelparameters.sympy.functions.special.delta_functions.Heaviside(arg, H0=None)[source]¶
Bases:
FunctionHeaviside Piecewise function
Heaviside function has the following properties [1]_:
diff(Heaviside(x),x) = DiracDelta(x)( 0, if x < 0
Heaviside(x) = < ( undefined if x==0 [1]( 1, if x > 0
Max(0,x).diff(x) = Heaviside(x)
[1] Regarding to the value at 0, Mathematica defines
H(0) = 1, but Maple usesH(0) = undefined. Different application areas may have specific conventions. For example, in control theory, it is common practice to assumeH(0) == 0to match the Laplace transform of a DiracDelta distribution.To specify the value of Heaviside at x=0, a second argument can be given. Omit this 2nd argument or pass
Noneto recover the default behavior.>>> from ... import Heaviside, S >>> from ...abc import x >>> Heaviside(9) 1 >>> Heaviside(-9) 0 >>> Heaviside(0) Heaviside(0) >>> Heaviside(0, S.Half) 1/2 >>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1)) Heaviside(x, 1) + 1
See also
References
[2] [3] - default_assumptions = {'commutative': True, 'complex': True, 'hermitian': True, 'imaginary': False, 'real': True}¶
- classmethod eval(arg, H0=None)[source]¶
Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object.
The
eval()method is automatically called when theHeavisideclass is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words,eval()method is not needed to be called explicitly, it is being called and evaluated once the object is called.Examples
>>> from ... import Heaviside, S >>> from ...abc import x
>>> Heaviside(x) Heaviside(x)
>>> Heaviside(19) 1
>>> Heaviside(0) Heaviside(0)
>>> Heaviside(0, 1) 1
>>> Heaviside(-5) 0
>>> Heaviside(S.NaN) nan
>>> Heaviside(x).eval(100) 1
>>> Heaviside(x - 100).subs(x, 5) 0
>>> Heaviside(x - 100).subs(x, 105) 1
- fdiff(argindex=1)[source]¶
Returns the first derivative of a Heaviside Function.
Examples
>>> from ... import Heaviside, diff >>> from ...abc import x
>>> Heaviside(x).fdiff() DiracDelta(x)
>>> Heaviside(x**2 - 1).fdiff() DiracDelta(x**2 - 1)
>>> diff(Heaviside(x)).fdiff() DiracDelta(x, 1)
- is_commutative = True¶
- is_complex = True¶
- is_hermitian = True¶
- is_imaginary = False¶
- is_real = True¶
modelparameters.sympy.functions.special.elliptic_integrals module¶
Elliptic integrals.
- class modelparameters.sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)[source]¶
Bases:
FunctionCalled with two arguments z and m, evaluates the incomplete elliptic integral of the second kind, defined by
\[E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt\]Called with a single argument m, evaluates the Legendre complete elliptic integral of the second kind
\[E(m) = E\left(\tfrac{\pi}{2}\middle| m\right)\]The function E(m) is a single-valued function on the complex plane with branch cut along the interval (1, infty).
Note that our notation defines the incomplete elliptic integral in terms of the parameter m instead of the elliptic modulus (eccentricity) k. In this case, the parameter m is defined as m=k^2.
Examples
>>> from ... import elliptic_e, I, pi, O >>> from ...abc import z, m >>> elliptic_e(z, m).series(z) z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6) >>> elliptic_e(m).series(n=4) pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4) >>> elliptic_e(1 + I, 2 - I/2).n() 1.55203744279187 + 0.290764986058437*I >>> elliptic_e(0) pi/2 >>> elliptic_e(2.0 - I) 0.991052601328069 + 0.81879421395609*I
References
[1] [2] [3] - default_assumptions = {}¶
- classmethod eval(m, z=None)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.elliptic_integrals.elliptic_f(z, m)[source]¶
Bases:
FunctionThe Legendre incomplete elliptic integral of the first kind, defined by
\[F\left(z\middle| m\right) = \int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}}\]This function reduces to a complete elliptic integral of the first kind, K(m), when z = pi/2.
Note that our notation defines the incomplete elliptic integral in terms of the parameter m instead of the elliptic modulus (eccentricity) k. In this case, the parameter m is defined as m=k^2.
Examples
>>> from ... import elliptic_f, I, O >>> from ...abc import z, m >>> elliptic_f(z, m).series(z) z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6) >>> elliptic_f(3.0 + I/2, 1.0 + I) 2.909449841483 + 1.74720545502474*I
References
[1] [2] See also
- default_assumptions = {}¶
- classmethod eval(z, m)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.elliptic_integrals.elliptic_k(m)[source]¶
Bases:
FunctionThe complete elliptic integral of the first kind, defined by
\[K(m) = F\left(\tfrac{\pi}{2}\middle| m\right)\]where Fleft(zmiddle| mright) is the Legendre incomplete elliptic integral of the first kind.
The function K(m) is a single-valued function on the complex plane with branch cut along the interval (1, infty).
Note that our notation defines the incomplete elliptic integral in terms of the parameter m instead of the elliptic modulus (eccentricity) k. In this case, the parameter m is defined as m=k^2.
Examples
>>> from ... import elliptic_k, I, pi >>> from ...abc import m >>> elliptic_k(0) pi/2 >>> elliptic_k(1.0 + I) 1.50923695405127 + 0.625146415202697*I >>> elliptic_k(m).series(n=3) pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3)
References
[1] [2] See also
- default_assumptions = {}¶
- classmethod eval(m)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)[source]¶
Bases:
FunctionCalled with three arguments n, z and m, evaluates the Legendre incomplete elliptic integral of the third kind, defined by
\[\Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt} {\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}}\]Called with two arguments n and m, evaluates the complete elliptic integral of the third kind:
\[\Pi\left(n\middle| m\right) = \Pi\left(n; \tfrac{\pi}{2}\middle| m\right)\]Note that our notation defines the incomplete elliptic integral in terms of the parameter m instead of the elliptic modulus (eccentricity) k. In this case, the parameter m is defined as m=k^2.
Examples
>>> from ... import elliptic_pi, I, pi, O, S >>> from ...abc import z, n, m >>> elliptic_pi(n, z, m).series(z, n=4) z + z**3*(m/6 + n/3) + O(z**4) >>> elliptic_pi(0.5 + I, 1.0 - I, 1.2) 2.50232379629182 - 0.760939574180767*I >>> elliptic_pi(0, 0) pi/2 >>> elliptic_pi(1.0 - I/3, 2.0 + I) 3.29136443417283 + 0.32555634906645*I
References
[1] [2] [3] - default_assumptions = {}¶
- classmethod eval(n, m, z=None)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
modelparameters.sympy.functions.special.error_functions module¶
This module contains various functions that are special cases of incomplete gamma functions. It should probably be renamed.
- class modelparameters.sympy.functions.special.error_functions.Chi(z)[source]¶
Bases:
TrigonometricIntegralCosh integral.
This function is defined for positive \(x\) by
\[\operatorname{Chi}(x) = \gamma + \log{x} + \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t,\]where \(\gamma\) is the Euler-Mascheroni constant.
We have
\[\operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right) - i\frac{\pi}{2},\]which holds for all polar \(z\) and thus provides an analytic continuation to the Riemann surface of the logarithm. By lifting to the principal branch we obtain an analytic function on the cut complex plane.
Examples
>>> from ... import Chi >>> from ...abc import z
The cosh integral is a primitive of cosh(z)/z:
>>> Chi(z).diff(z) cosh(z)/z
It has a logarithmic branch point at the origin:
>>> from ... import exp_polar, I, pi >>> Chi(z*exp_polar(2*I*pi)) Chi(z) + 2*I*pi
The cosh integral behaves somewhat like ordinary cosh under multiplication by i:
>>> from ... import polar_lift >>> Chi(polar_lift(I)*z) Ci(z) + I*pi/2 >>> Chi(polar_lift(-1)*z) Chi(z) + I*pi
It can also be expressed in terms of exponential integrals:
>>> from ... import expint >>> Chi(z).rewrite(expint) -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
See also
References
[1] - default_assumptions = {}¶
- class modelparameters.sympy.functions.special.error_functions.Ci(z)[source]¶
Bases:
TrigonometricIntegralCosine integral.
This function is defined for positive x by
\[\operatorname{Ci}(x) = \gamma + \log{x} + \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t = -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t,\]where gamma is the Euler-Mascheroni constant.
We have
\[\operatorname{Ci}(z) = -\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right) + \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2}\]which holds for all polar z and thus provides an analytic continuation to the Riemann surface of the logarithm.
The formula also holds as stated for z in mathbb{C} with Re(z) > 0. By lifting to the principal branch we obtain an analytic function on the cut complex plane.
Examples
>>> from ... import Ci >>> from ...abc import z
The cosine integral is a primitive of cos(z)/z:
>>> Ci(z).diff(z) cos(z)/z
It has a logarithmic branch point at the origin:
>>> from ... import exp_polar, I, pi >>> Ci(z*exp_polar(2*I*pi)) Ci(z) + 2*I*pi
The cosine integral behaves somewhat like ordinary cos under multiplication by i:
>>> from ... import polar_lift >>> Ci(polar_lift(I)*z) Chi(z) + I*pi/2 >>> Ci(polar_lift(-1)*z) Ci(z) + I*pi
It can also be expressed in terms of exponential integrals:
>>> from ... import expint >>> Ci(z).rewrite(expint) -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
See also
References
[1] - default_assumptions = {}¶
- modelparameters.sympy.functions.special.error_functions.E1(z)[source]¶
Classical case of the generalized exponential integral.
This is equivalent to
expint(1, z).
- class modelparameters.sympy.functions.special.error_functions.Ei(z)[source]¶
Bases:
FunctionThe classical exponential integral.
For use in SymPy, this function is defined as
\[\operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!} + \log(x) + \gamma,\]where gamma is the Euler-Mascheroni constant.
If x is a polar number, this defines an analytic function on the Riemann surface of the logarithm. Otherwise this defines an analytic function in the cut plane mathbb{C} setminus (-infty, 0].
Background
The name exponential integral comes from the following statement:
\[\operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t\]If the integral is interpreted as a Cauchy principal value, this statement holds for x > 0 and operatorname{Ei}(x) as defined above.
Note that we carefully avoided defining operatorname{Ei}(x) for negative real x. This is because above integral formula does not hold for any polar lift of such x, indeed all branches of operatorname{Ei}(x) above the negative reals are imaginary.
However, the following statement holds for all x in mathbb{R}^*:
\[\int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t = \frac{\operatorname{Ei}\left(|x|e^{i \arg(x)}\right) + \operatorname{Ei}\left(|x|e^{- i \arg(x)}\right)}{2},\]where the integral is again understood to be a principal value if x > 0, and |x|e^{i arg(x)}, |x|e^{- i arg(x)} denote two conjugate polar lifts of x.
Examples
>>> from ... import Ei, polar_lift, exp_polar, I, pi >>> from ...abc import x
The exponential integral in SymPy is strictly undefined for negative values of the argument. For convenience, exponential integrals with negative arguments are immediately converted into an expression that agrees with the classical integral definition:
>>> Ei(-1) -I*pi + Ei(exp_polar(I*pi))
This yields a real value:
>>> Ei(-1).n(chop=True) -0.219383934395520
On the other hand the analytic continuation is not real:
>>> Ei(polar_lift(-1)).n(chop=True) -0.21938393439552 + 3.14159265358979*I
The exponential integral has a logarithmic branch point at the origin:
>>> Ei(x*exp_polar(2*I*pi)) Ei(x) + 2*I*pi
Differentiation is supported:
>>> Ei(x).diff(x) exp(x)/x
The exponential integral is related to many other special functions. For example:
>>> from ... import uppergamma, expint, Shi >>> Ei(x).rewrite(expint) -expint(1, x*exp_polar(I*pi)) - I*pi >>> Ei(x).rewrite(Shi) Chi(x) + Shi(x)
See also
expintGeneralised exponential integral.
E1Special case of the generalised exponential integral.
liLogarithmic integral.
LiOffset logarithmic integral.
SiSine integral.
CiCosine integral.
ShiHyperbolic sine integral.
ChiHyperbolic cosine integral.
sympy.functions.special.gamma_functions.uppergammaUpper incomplete gamma function.
References
[1] [2] [3] Abramowitz & Stegun, section 5: http://people.math.sfu.ca/~cbm/aands/page_228.htm
- default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.error_functions.FresnelIntegral(z)[source]¶
Bases:
FunctionBase class for the Fresnel integrals.
- as_real_imag(deep=True, **hints)[source]¶
Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method can’t be confused with re() and im() functions, which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function.
>>> from .. import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag() (x, y)
>>> from ..abc import z, w
>>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z))
- default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- unbranched = True¶
- class modelparameters.sympy.functions.special.error_functions.Li(z)[source]¶
Bases:
FunctionThe offset logarithmic integral.
For the use in SymPy, this function is defined as
\[\operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2)\]Examples
>>> from ... import I, oo, Li >>> from ...abc import z
The following special value is known:
>>> Li(2) 0
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(Li(z), z) 1/log(z)
The shifted logarithmic integral can be written in terms of li(z):
>>> from ... import li >>> Li(z).rewrite(li) li(z) - li(2)
We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points):
>>> Li(2).evalf(30) 0
>>> Li(4).evalf(30) 1.92242131492155809316615998938
See also
References
[1] [2] [3] - default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.error_functions.Shi(z)[source]¶
Bases:
TrigonometricIntegralSinh integral.
This function is defined by
\[\operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t.\]It is an entire function.
Examples
>>> from ... import Shi >>> from ...abc import z
The Sinh integral is a primitive of sinh(z)/z:
>>> Shi(z).diff(z) sinh(z)/z
It is unbranched:
>>> from ... import exp_polar, I, pi >>> Shi(z*exp_polar(2*I*pi)) Shi(z)
The sinh integral behaves much like ordinary sinh under multiplication by i:
>>> Shi(I*z) I*Si(z) >>> Shi(-z) -Shi(z)
It can also be expressed in terms of exponential integrals, but beware that the latter is branched:
>>> from ... import expint >>> Shi(z).rewrite(expint) expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
See also
References
[1] - default_assumptions = {}¶
- class modelparameters.sympy.functions.special.error_functions.Si(z)[source]¶
Bases:
TrigonometricIntegralSine integral.
This function is defined by
\[\operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t.\]It is an entire function.
Examples
>>> from ... import Si >>> from ...abc import z
The sine integral is an antiderivative of sin(z)/z:
>>> Si(z).diff(z) sin(z)/z
It is unbranched:
>>> from ... import exp_polar, I, pi >>> Si(z*exp_polar(2*I*pi)) Si(z)
Sine integral behaves much like ordinary sine under multiplication by
I:>>> Si(I*z) I*Shi(z) >>> Si(-z) -Si(z)
It can also be expressed in terms of exponential integrals, but beware that the latter is branched:
>>> from ... import expint >>> Si(z).rewrite(expint) -I*(-expint(1, z*exp_polar(-I*pi/2))/2 + expint(1, z*exp_polar(I*pi/2))/2) + pi/2
It can be rewritten in the form of sinc function (By definition)
>>> from ... import sinc >>> Si(z).rewrite(sinc) Integral(sinc(t), (t, 0, z))
See also
References
[1] - default_assumptions = {}¶
- class modelparameters.sympy.functions.special.error_functions.TrigonometricIntegral(z)[source]¶
Bases:
FunctionBase class for trigonometric integrals.
- default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.error_functions.erf(arg)[source]¶
Bases:
FunctionThe Gauss error function. This function is defined as:
\[\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t.\]Examples
>>> from ... import I, oo, erf >>> from ...abc import z
Several special values are known:
>>> erf(0) 0 >>> erf(oo) 1 >>> erf(-oo) -1 >>> erf(I*oo) oo*I >>> erf(-I*oo) -oo*I
In general one can pull out factors of -1 and I from the argument:
>>> erf(-z) -erf(z)
The error function obeys the mirror symmetry:
>>> from ... import conjugate >>> conjugate(erf(z)) erf(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(erf(z), z) 2*exp(-z**2)/sqrt(pi)
We can numerically evaluate the error function to arbitrary precision on the whole complex plane:
>>> erf(4).evalf(30) 0.999999984582742099719981147840
>>> erf(-4*I).evalf(30) -1296959.73071763923152794095062*I
See also
References
[1] [2] [3] [4] - as_real_imag(deep=True, **hints)[source]¶
Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method can’t be confused with re() and im() functions, which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function.
>>> from .. import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag() (x, y)
>>> from ..abc import z, w
>>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z))
- default_assumptions = {}¶
- classmethod eval(arg)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- static taylor_term(n, x, *previous_terms)[source]¶
General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.
- unbranched = True¶
- class modelparameters.sympy.functions.special.error_functions.erf2(x, y)[source]¶
Bases:
FunctionTwo-argument error function. This function is defined as:
\[\mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t\]Examples
>>> from ... import I, oo, erf2 >>> from ...abc import x, y
Several special values are known:
>>> erf2(0, 0) 0 >>> erf2(x, x) 0 >>> erf2(x, oo) -erf(x) + 1 >>> erf2(x, -oo) -erf(x) - 1 >>> erf2(oo, y) erf(y) - 1 >>> erf2(-oo, y) erf(y) + 1
In general one can pull out factors of -1:
>>> erf2(-x, -y) -erf2(x, y)
The error function obeys the mirror symmetry:
>>> from ... import conjugate >>> conjugate(erf2(x, y)) erf2(conjugate(x), conjugate(y))
Differentiation with respect to x, y is supported:
>>> from ... import diff >>> diff(erf2(x, y), x) -2*exp(-x**2)/sqrt(pi) >>> diff(erf2(x, y), y) 2*exp(-y**2)/sqrt(pi)
See also
References
[1] - default_assumptions = {}¶
- classmethod eval(x, y)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.error_functions.erf2inv(x, y)[source]¶
Bases:
FunctionTwo-argument Inverse error function. The erf2inv function is defined as:
\[\mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w\]Examples
>>> from ... import I, oo, erf2inv, erfinv, erfcinv >>> from ...abc import x, y
Several special values are known:
>>> erf2inv(0, 0) 0 >>> erf2inv(1, 0) 1 >>> erf2inv(0, 1) oo >>> erf2inv(0, y) erfinv(y) >>> erf2inv(oo, y) erfcinv(-y)
Differentiation with respect to x and y is supported:
>>> from ... import diff >>> diff(erf2inv(x, y), x) exp(-x**2 + erf2inv(x, y)**2) >>> diff(erf2inv(x, y), y) sqrt(pi)*exp(erf2inv(x, y)**2)/2
See also
References
[1] - default_assumptions = {}¶
- classmethod eval(x, y)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.error_functions.erfc(arg)[source]¶
Bases:
FunctionComplementary Error Function. The function is defined as:
\[\mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t\]Examples
>>> from ... import I, oo, erfc >>> from ...abc import z
Several special values are known:
>>> erfc(0) 1 >>> erfc(oo) 0 >>> erfc(-oo) 2 >>> erfc(I*oo) -oo*I >>> erfc(-I*oo) oo*I
The error function obeys the mirror symmetry:
>>> from ... import conjugate >>> conjugate(erfc(z)) erfc(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(erfc(z), z) -2*exp(-z**2)/sqrt(pi)
It also follows
>>> erfc(-z) -erfc(z) + 2
We can numerically evaluate the complementary error function to arbitrary precision on the whole complex plane:
>>> erfc(4).evalf(30) 0.0000000154172579002800188521596734869
>>> erfc(4*I).evalf(30) 1.0 - 1296959.73071763923152794095062*I
See also
References
[1] [2] [3] [4] - as_real_imag(deep=True, **hints)[source]¶
Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method can’t be confused with re() and im() functions, which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function.
>>> from .. import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag() (x, y)
>>> from ..abc import z, w
>>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z))
- default_assumptions = {}¶
- classmethod eval(arg)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- static taylor_term(n, x, *previous_terms)[source]¶
General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.
- unbranched = True¶
- class modelparameters.sympy.functions.special.error_functions.erfcinv(z)[source]¶
Bases:
FunctionInverse Complementary Error Function. The erfcinv function is defined as:
\[\mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x\]Examples
>>> from ... import I, oo, erfcinv >>> from ...abc import x
Several special values are known:
>>> erfcinv(1) 0 >>> erfcinv(0) oo
Differentiation with respect to x is supported:
>>> from ... import diff >>> diff(erfcinv(x), x) -sqrt(pi)*exp(erfcinv(x)**2)/2
See also
References
[1] http://en.wikipedia.org/wiki/Error_function#Inverse_functions
[2] - default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.error_functions.erfi(z)[source]¶
Bases:
FunctionImaginary error function. The function erfi is defined as:
\[\mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t\]Examples
>>> from ... import I, oo, erfi >>> from ...abc import z
Several special values are known:
>>> erfi(0) 0 >>> erfi(oo) oo >>> erfi(-oo) -oo >>> erfi(I*oo) I >>> erfi(-I*oo) -I
In general one can pull out factors of -1 and I from the argument:
>>> erfi(-z) -erfi(z)
>>> from ... import conjugate >>> conjugate(erfi(z)) erfi(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(erfi(z), z) 2*exp(z**2)/sqrt(pi)
We can numerically evaluate the imaginary error function to arbitrary precision on the whole complex plane:
>>> erfi(2).evalf(30) 18.5648024145755525987042919132
>>> erfi(-2*I).evalf(30) -0.995322265018952734162069256367*I
See also
References
[1] [2] [3] - as_real_imag(deep=True, **hints)[source]¶
Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method can’t be confused with re() and im() functions, which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function.
>>> from .. import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag() (x, y)
>>> from ..abc import z, w
>>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z))
- default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- static taylor_term(n, x, *previous_terms)[source]¶
General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the “previous_terms”.
- unbranched = True¶
- class modelparameters.sympy.functions.special.error_functions.erfinv(z)[source]¶
Bases:
FunctionInverse Error Function. The erfinv function is defined as:
\[\mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x\]Examples
>>> from ... import I, oo, erfinv >>> from ...abc import x
Several special values are known:
>>> erfinv(0) 0 >>> erfinv(1) oo
Differentiation with respect to x is supported:
>>> from ... import diff >>> diff(erfinv(x), x) sqrt(pi)*exp(erfinv(x)**2)/2
We can numerically evaluate the inverse error function to arbitrary precision on [-1, 1]:
>>> erfinv(0.2).evalf(30) 0.179143454621291692285822705344
See also
References
[1] http://en.wikipedia.org/wiki/Error_function#Inverse_functions
[2] - default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.error_functions.expint(nu, z)[source]¶
Bases:
FunctionGeneralized exponential integral.
This function is defined as
\[\operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z),\]where Gamma(1 - nu, z) is the upper incomplete gamma function (
uppergamma).Hence for \(z\) with positive real part we have
\[\operatorname{E}_\nu(z) = \int_1^\infty \frac{e^{-zt}}{z^\nu} \mathrm{d}t,\]which explains the name.
The representation as an incomplete gamma function provides an analytic continuation for \(\operatorname{E}_\nu(z)\). If \(\nu\) is a non-positive integer the exponential integral is thus an unbranched function of \(z\), otherwise there is a branch point at the origin. Refer to the incomplete gamma function documentation for details of the branching behavior.
Examples
>>> from ... import expint, S >>> from ...abc import nu, z
Differentiation is supported. Differentiation with respect to z explains further the name: for integral orders, the exponential integral is an iterated integral of the exponential function.
>>> expint(nu, z).diff(z) -expint(nu - 1, z)
Differentiation with respect to nu has no classical expression:
>>> expint(nu, z).diff(nu) -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, -nu + 1), ()), z)
At non-postive integer orders, the exponential integral reduces to the exponential function:
>>> expint(0, z) exp(-z)/z >>> expint(-1, z) exp(-z)/z + exp(-z)/z**2
At half-integers it reduces to error functions:
>>> expint(S(1)/2, z) sqrt(pi)*erfc(sqrt(z))/sqrt(z)
At positive integer orders it can be rewritten in terms of exponentials and expint(1, z). Use expand_func() to do this:
>>> from ... import expand_func >>> expand_func(expint(5, z)) z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24
The generalised exponential integral is essentially equivalent to the incomplete gamma function:
>>> from ... import uppergamma >>> expint(nu, z).rewrite(uppergamma) z**(nu - 1)*uppergamma(-nu + 1, z)
As such it is branched at the origin:
>>> from ... import exp_polar, pi, I >>> expint(4, z*exp_polar(2*pi*I)) I*pi*z**3/3 + expint(4, z) >>> expint(nu, z*exp_polar(2*pi*I)) z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(-nu + 1) + expint(nu, z)
See also
EiAnother related function called exponential integral.
E1The classical case, returns expint(1, z).
liLogarithmic integral.
LiOffset logarithmic integral.
SiSine integral.
CiCosine integral.
ShiHyperbolic sine integral.
ChiHyperbolic cosine integral.
sympy.functions.special.gamma_functions.uppergammaReferences
[1] [2] [3] - default_assumptions = {}¶
- classmethod eval(nu, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.error_functions.fresnelc(z)[source]¶
Bases:
FresnelIntegralFresnel integral C.
This function is defined by
\[\operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t.\]It is an entire function.
Examples
>>> from ... import I, oo, fresnelc >>> from ...abc import z
Several special values are known:
>>> fresnelc(0) 0 >>> fresnelc(oo) 1/2 >>> fresnelc(-oo) -1/2 >>> fresnelc(I*oo) I/2 >>> fresnelc(-I*oo) -I/2
In general one can pull out factors of -1 and i from the argument:
>>> fresnelc(-z) -fresnelc(z) >>> fresnelc(I*z) I*fresnelc(z)
The Fresnel C integral obeys the mirror symmetry overline{C(z)} = C(bar{z}):
>>> from ... import conjugate >>> conjugate(fresnelc(z)) fresnelc(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(fresnelc(z), z) cos(pi*z**2/2)
Defining the Fresnel functions via an integral
>>> from ... import integrate, pi, cos, gamma, expand_func >>> integrate(cos(pi*z**2/2), z) fresnelc(z)*gamma(1/4)/(4*gamma(5/4)) >>> expand_func(integrate(cos(pi*z**2/2), z)) fresnelc(z)
We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane:
>>> fresnelc(2).evalf(30) 0.488253406075340754500223503357
>>> fresnelc(-2*I).evalf(30) -0.488253406075340754500223503357*I
See also
fresnelsFresnel sine integral.
References
[1] [2] [3] [4] [5] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.error_functions.fresnels(z)[source]¶
Bases:
FresnelIntegralFresnel integral S.
This function is defined by
\[\operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t.\]It is an entire function.
Examples
>>> from ... import I, oo, fresnels >>> from ...abc import z
Several special values are known:
>>> fresnels(0) 0 >>> fresnels(oo) 1/2 >>> fresnels(-oo) -1/2 >>> fresnels(I*oo) -I/2 >>> fresnels(-I*oo) I/2
In general one can pull out factors of -1 and i from the argument:
>>> fresnels(-z) -fresnels(z) >>> fresnels(I*z) -I*fresnels(z)
The Fresnel S integral obeys the mirror symmetry overline{S(z)} = S(bar{z}):
>>> from ... import conjugate >>> conjugate(fresnels(z)) fresnels(conjugate(z))
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(fresnels(z), z) sin(pi*z**2/2)
Defining the Fresnel functions via an integral
>>> from ... import integrate, pi, sin, gamma, expand_func >>> integrate(sin(pi*z**2/2), z) 3*fresnels(z)*gamma(3/4)/(4*gamma(7/4)) >>> expand_func(integrate(sin(pi*z**2/2), z)) fresnels(z)
We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane:
>>> fresnels(2).evalf(30) 0.343415678363698242195300815958
>>> fresnels(-2*I).evalf(30) 0.343415678363698242195300815958*I
See also
fresnelcFresnel cosine integral.
References
[1] [2] [3] [4] [5] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.error_functions.li(z)[source]¶
Bases:
FunctionThe classical logarithmic integral.
For the use in SymPy, this function is defined as
\[\operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,.\]Examples
>>> from ... import I, oo, li >>> from ...abc import z
Several special values are known:
>>> li(0) 0 >>> li(1) -oo >>> li(oo) oo
Differentiation with respect to z is supported:
>>> from ... import diff >>> diff(li(z), z) 1/log(z)
Defining the li function via an integral:
The logarithmic integral can also be defined in terms of Ei:
>>> from ... import Ei >>> li(z).rewrite(Ei) Ei(log(z)) >>> diff(li(z).rewrite(Ei), z) 1/log(z)
We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points):
>>> li(2).evalf(30) 1.04516378011749278484458888919
>>> li(2*I).evalf(30) 1.0652795784357498247001125598 + 3.08346052231061726610939702133*I
We can even compute Soldner’s constant by the help of mpmath:
>>> from mpmath import findroot >>> findroot(li, 2) 1.45136923488338
Further transformations include rewriting li in terms of the trigonometric integrals Si, Ci, Shi and Chi:
>>> from ... import Si, Ci, Shi, Chi >>> li(z).rewrite(Si) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Ci) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Shi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) >>> li(z).rewrite(Chi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
See also
References
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
modelparameters.sympy.functions.special.gamma_functions module¶
- modelparameters.sympy.functions.special.gamma_functions.digamma(x)[source]¶
The digamma function is the first derivative of the loggamma function i.e,
\[\psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z) }\]In this case,
digamma(z) = polygamma(0, z).See also
gammaGamma function.
lowergammaLower incomplete gamma function.
uppergammaUpper incomplete gamma function.
polygammaPolygamma function.
loggammaLog Gamma function.
trigammaTrigamma function.
sympy.functions.special.beta_functions.betaEuler Beta function.
References
[1] [2] [3]
- class modelparameters.sympy.functions.special.gamma_functions.gamma(arg)[source]¶
Bases:
FunctionThe gamma function
\[\Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{t} \mathrm{d}t.\]The
gammafunction implements the function which passes through the values of the factorial function, i.e. Gamma(n) = (n - 1)! when n is an integer. More general, Gamma(z) is defined in the whole complex plane except at the negative integers where there are simple poles.Examples
>>> from ... import S, I, pi, oo, gamma >>> from ...abc import x
Several special values are known:
>>> gamma(1) 1 >>> gamma(4) 6 >>> gamma(S(3)/2) sqrt(pi)/2
The Gamma function obeys the mirror symmetry:
>>> from ... import conjugate >>> conjugate(gamma(x)) gamma(conjugate(x))
Differentiation with respect to x is supported:
>>> from ... import diff >>> diff(gamma(x), x) gamma(x)*polygamma(0, x)
Series expansion is also supported:
>>> from ... import series >>> series(gamma(x), x, 0, 3) 1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3)
We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane:
>>> gamma(pi).evalf(40) 2.288037795340032417959588909060233922890 >>> gamma(1+I).evalf(20) 0.49801566811835604271 - 0.15494982830181068512*I
See also
lowergammaLower incomplete gamma function.
uppergammaUpper incomplete gamma function.
polygammaPolygamma function.
loggammaLog Gamma function.
digammaDigamma function.
trigammaTrigamma function.
sympy.functions.special.beta_functions.betaEuler Beta function.
References
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(arg)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- unbranched = True¶
- class modelparameters.sympy.functions.special.gamma_functions.loggamma(z)[source]¶
Bases:
FunctionThe
loggammafunction implements the logarithm of the gamma function i.e, logGamma(x).Examples
Several special values are known. For numerical integral arguments we have:
>>> from ... import loggamma >>> loggamma(-2) oo >>> loggamma(0) oo >>> loggamma(1) 0 >>> loggamma(2) 0 >>> loggamma(3) log(2)
and for symbolic values:
>>> from ... import Symbol >>> n = Symbol("n", integer=True, positive=True) >>> loggamma(n) log(gamma(n)) >>> loggamma(-n) oo
for half-integral values:
>>> from ... import S, pi >>> loggamma(S(5)/2) log(3*sqrt(pi)/4) >>> loggamma(n/2) log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
and general rational arguments:
>>> from ... import expand_func >>> L = loggamma(S(16)/3) >>> expand_func(L).doit() -5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13) >>> L = loggamma(S(19)/4) >>> expand_func(L).doit() -4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15) >>> L = loggamma(S(23)/7) >>> expand_func(L).doit() -3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
The loggamma function has the following limits towards infinity:
>>> from ... import oo >>> loggamma(oo) oo >>> loggamma(-oo) zoo
The loggamma function obeys the mirror symmetry if x in mathbb{C} setminus {-infty, 0}:
>>> from ...abc import x >>> from ... import conjugate >>> conjugate(loggamma(x)) loggamma(conjugate(x))
Differentiation with respect to x is supported:
>>> from ... import diff >>> diff(loggamma(x), x) polygamma(0, x)
Series expansion is also supported:
>>> from ... import series >>> series(loggamma(x), x, 0, 4) -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4)
We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane:
>>> from ... import I >>> loggamma(5).evalf(30) 3.17805383034794561964694160130 >>> loggamma(I).evalf(20) -0.65092319930185633889 - 1.8724366472624298171*I
See also
gammaGamma function.
lowergammaLower incomplete gamma function.
uppergammaUpper incomplete gamma function.
polygammaPolygamma function.
digammaDigamma function.
trigammaTrigamma function.
sympy.functions.special.beta_functions.betaEuler Beta function.
References
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.gamma_functions.lowergamma(a, x)[source]¶
Bases:
FunctionThe lower incomplete gamma function.
It can be defined as the meromorphic continuation of
\[\gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x).\]This can be shown to be the same as
\[\gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),\]where \({}_1F_1\) is the (confluent) hypergeometric function.
Examples
>>> from ... import lowergamma, S >>> from ...abc import s, x >>> lowergamma(s, x) lowergamma(s, x) >>> lowergamma(3, x) -x**2*exp(-x) - 2*x*exp(-x) + 2 - 2*exp(-x) >>> lowergamma(-S(1)/2, x) -2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
See also
References
[1] http://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function
[2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[3] [4] [5] - default_assumptions = {}¶
- classmethod eval(a, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.gamma_functions.polygamma(n, z)[source]¶
Bases:
FunctionThe function
polygamma(n, z)returnslog(gamma(z)).diff(n + 1).It is a meromorphic function on mathbb{C} and defined as the (n+1)-th derivative of the logarithm of the gamma function:
\[\psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z).\]Examples
Several special values are known:
>>> from ... import S, polygamma >>> polygamma(0, 1) -EulerGamma >>> polygamma(0, 1/S(2)) -2*log(2) - EulerGamma >>> polygamma(0, 1/S(3)) -3*log(3)/2 - sqrt(3)*pi/6 - EulerGamma >>> polygamma(0, 1/S(4)) -3*log(2) - pi/2 - EulerGamma >>> polygamma(0, 2) -EulerGamma + 1 >>> polygamma(0, 23) -EulerGamma + 19093197/5173168
>>> from ... import oo, I >>> polygamma(0, oo) oo >>> polygamma(0, -oo) oo >>> polygamma(0, I*oo) oo >>> polygamma(0, -I*oo) oo
Differentiation with respect to x is supported:
>>> from ... import Symbol, diff >>> x = Symbol("x") >>> diff(polygamma(0, x), x) polygamma(1, x) >>> diff(polygamma(0, x), x, 2) polygamma(2, x) >>> diff(polygamma(0, x), x, 3) polygamma(3, x) >>> diff(polygamma(1, x), x) polygamma(2, x) >>> diff(polygamma(1, x), x, 2) polygamma(3, x) >>> diff(polygamma(2, x), x) polygamma(3, x) >>> diff(polygamma(2, x), x, 2) polygamma(4, x)
>>> n = Symbol("n") >>> diff(polygamma(n, x), x) polygamma(n + 1, x) >>> diff(polygamma(n, x), x, 2) polygamma(n + 2, x)
We can rewrite polygamma functions in terms of harmonic numbers:
>>> from ... import harmonic >>> polygamma(0, x).rewrite(harmonic) harmonic(x - 1) - EulerGamma >>> polygamma(2, x).rewrite(harmonic) 2*harmonic(x - 1, 3) - 2*zeta(3) >>> ni = Symbol("n", integer=True) >>> polygamma(ni, x).rewrite(harmonic) (-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
See also
gammaGamma function.
lowergammaLower incomplete gamma function.
uppergammaUpper incomplete gamma function.
loggammaLog Gamma function.
digammaDigamma function.
trigammaTrigamma function.
sympy.functions.special.beta_functions.betaEuler Beta function.
References
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(n, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- modelparameters.sympy.functions.special.gamma_functions.trigamma(x)[source]¶
The trigamma function is the second derivative of the loggamma function i.e,
\[\psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).\]In this case,
trigamma(z) = polygamma(1, z).See also
gammaGamma function.
lowergammaLower incomplete gamma function.
uppergammaUpper incomplete gamma function.
polygammaPolygamma function.
loggammaLog Gamma function.
digammaDigamma function.
sympy.functions.special.beta_functions.betaEuler Beta function.
References
[1] [2] [3]
- class modelparameters.sympy.functions.special.gamma_functions.uppergamma(a, z)[source]¶
Bases:
FunctionThe upper incomplete gamma function.
It can be defined as the meromorphic continuation of
\[\Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x).\]where gamma(s, x) is the lower incomplete gamma function,
lowergamma. This can be shown to be the same as\[\Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),\]where \({}_1F_1\) is the (confluent) hypergeometric function.
The upper incomplete gamma function is also essentially equivalent to the generalized exponential integral:
\[\operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x).\]Examples
>>> from ... import uppergamma, S >>> from ...abc import s, x >>> uppergamma(s, x) uppergamma(s, x) >>> uppergamma(3, x) x**2*exp(-x) + 2*x*exp(-x) + 2*exp(-x) >>> uppergamma(-S(1)/2, x) -2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x) >>> uppergamma(-2, x) expint(3, x)/x**2
See also
References
[1] http://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function
[2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[3] [4] [5] [6] http://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions
- default_assumptions = {}¶
- classmethod eval(a, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
modelparameters.sympy.functions.special.hyper module¶
Hypergeometric and Meijer G-functions
- class modelparameters.sympy.functions.special.hyper.HyperRep(*args)[source]¶
Bases:
FunctionA base class for “hyper representation functions”.
This is used exclusively in hyperexpand(), but fits more logically here.
pFq is branched at 1 if p == q+1. For use with slater-expansion, we want define an “analytic continuation” to all polar numbers, which is continuous on circles and on the ray t*exp_polar(I*pi). Moreover, we want a “nice” expression for the various cases.
This base class contains the core logic, concrete derived classes only supply the actual functions.
- default_assumptions = {}¶
- classmethod eval(*args)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.hyper.HyperRep_asin1(*args)[source]¶
Bases:
HyperRepRepresent hyper([1/2, 1/2], [3/2], z) == asin(sqrt(z))/sqrt(z).
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_asin2(*args)[source]¶
Bases:
HyperRepRepresent hyper([1, 1], [3/2], z) == asin(sqrt(z))/sqrt(z)/sqrt(1-z).
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_atanh(*args)[source]¶
Bases:
HyperRepRepresent hyper([1/2, 1], [3/2], z) == atanh(sqrt(z))/sqrt(z).
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_cosasin(*args)[source]¶
Bases:
HyperRepRepresent hyper([a, -a], [1/2], z) == cos(2*a*asin(sqrt(z))).
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_log1(*args)[source]¶
Bases:
HyperRepRepresent -z*hyper([1, 1], [2], z) == log(1 - z).
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_log2(*args)[source]¶
Bases:
HyperRepRepresent log(1/2 + sqrt(1 - z)/2) == -z/4*hyper([3/2, 1, 1], [2, 2], z)
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_power1(*args)[source]¶
Bases:
HyperRepReturn a representative for hyper([-a], [], z) == (1 - z)**a.
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_power2(*args)[source]¶
Bases:
HyperRepReturn a representative for hyper([a, a - 1/2], [2*a], z).
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_sinasin(*args)[source]¶
Bases:
HyperRepRepresent 2*a*z*hyper([1 - a, 1 + a], [3/2], z) == sqrt(z)/sqrt(1-z)*sin(2*a*asin(sqrt(z)))
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_sqrts1(*args)[source]¶
Bases:
HyperRepReturn a representative for hyper([-a, 1/2 - a], [1/2], z).
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.HyperRep_sqrts2(*args)[source]¶
Bases:
HyperRepReturn a representative for sqrt(z)/2*[(1-sqrt(z))**2a - (1 + sqrt(z))**2a] == -2*z/(2*a+1) d/dz hyper([-a - 1/2, -a], [1/2], z)
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.TupleArg(*args, **kwargs)[source]¶
Bases:
Tuple- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.hyper.TupleParametersBase(*args)[source]¶
Bases:
FunctionBase class that takes care of differentiation, when some of the arguments are actually tuples.
- default_assumptions = {'commutative': True}¶
- is_commutative = True¶
- class modelparameters.sympy.functions.special.hyper.hyper(ap, bq, z)[source]¶
Bases:
TupleParametersBaseThe (generalized) hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest possible domain.
The hypergeometric function depends on two vectors of parameters, called the numerator parameters \(a_p\), and the denominator parameters \(b_q\). It also has an argument \(z\). The series definition is
\[\begin{split}{}_pF_q\left(\begin{matrix} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{matrix} \middle| z \right) = \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!},\end{split}\]where \((a)_n = (a)(a+1)\cdots(a+n-1)\) denotes the rising factorial.
If one of the \(b_q\) is a non-positive integer then the series is undefined unless one of the a_p is a larger (i.e. smaller in magnitude) non-positive integer. If none of the \(b_q\) is a non-positive integer and one of the \(a_p\) is a non-positive integer, then the series reduces to a polynomial. To simplify the following discussion, we assume that none of the \(a_p\) or \(b_q\) is a non-positive integer. For more details, see the references.
The series converges for all \(z\) if \(p \le q\), and thus defines an entire single-valued function in this case. If \(p = q+1\) the series converges for \(|z| < 1\), and can be continued analytically into a half-plane. If \(p > q+1\) the series is divergent for all \(z\).
Note: The hypergeometric function constructor currently does not check if the parameters actually yield a well-defined function.
Examples
The parameters \(a_p\) and \(b_q\) can be passed as arbitrary iterables, for example:
>>> from ...functions import hyper >>> from ...abc import x, n, a >>> hyper((1, 2, 3), [3, 4], x) hyper((1, 2, 3), (3, 4), x)
There is also pretty printing (it looks better using unicode):
>>> from ... import pprint >>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False) _ |_ /1, 2, 3 | \ | | | x| 3 2 \ 3, 4 | /
The parameters must always be iterables, even if they are vectors of length one or zero:
>>> hyper((1, ), [], x) hyper((1,), (), x)
But of course they may be variables (but if they depend on x then you should not expect much implemented functionality):
>>> hyper((n, a), (n**2,), x) hyper((n, a), (n**2,), x)
The hypergeometric function generalizes many named special functions. The function hyperexpand() tries to express a hypergeometric function using named special functions. For example:
>>> from ... import hyperexpand >>> hyperexpand(hyper([], [], x)) exp(x)
You can also use expand_func:
>>> from ... import expand_func >>> expand_func(x*hyper([1, 1], [2], -x)) log(x + 1)
More examples:
>>> from ... import S >>> hyperexpand(hyper([], [S(1)/2], -x**2/4)) cos(x) >>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2)) asin(x)
We can also sometimes hyperexpand parametric functions:
>>> from ...abc import a >>> hyperexpand(hyper([-a], [], x)) (-x + 1)**a
See also
sympy.simplify.hyperexpand,sympy.functions.special.gamma_functions.gamma,meijergReferences
[1] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1
[2] http://en.wikipedia.org/wiki/Generalized_hypergeometric_function
- property ap¶
Numerator parameters of the hypergeometric function.
- property argument¶
Argument of the hypergeometric function.
- property bq¶
Denominator parameters of the hypergeometric function.
- property convergence_statement¶
Return a condition on z under which the series converges.
- default_assumptions = {'commutative': True}¶
- property eta¶
A quantity related to the convergence of the series.
- classmethod eval(ap, bq, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- is_commutative = True¶
- property radius_of_convergence¶
Compute the radius of convergence of the defining series.
Note that even if this is not oo, the function may still be evaluated outside of the radius of convergence by analytic continuation. But if this is zero, then the function is not actually defined anywhere else.
>>> from ...functions import hyper >>> from ...abc import z >>> hyper((1, 2), [3], z).radius_of_convergence 1 >>> hyper((1, 2, 3), [4], z).radius_of_convergence 0 >>> hyper((1, 2), (3, 4), z).radius_of_convergence oo
- class modelparameters.sympy.functions.special.hyper.meijerg(*args)[source]¶
Bases:
TupleParametersBaseThe Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions.
The Meijer G-function depends on four sets of parameters. There are “numerator parameters” \(a_1, \ldots, a_n\) and \(a_{n+1}, \ldots, a_p\), and there are “denominator parameters” \(b_1, \ldots, b_m\) and \(b_{m+1}, \ldots, b_q\). Confusingly, it is traditionally denoted as follows (note the position of m, n, p, q, and how they relate to the lengths of the four parameter vectors):
\[\begin{split}G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\ b_1, \cdots, b_m & b_{m+1}, \cdots, b_q \end{matrix} \middle| z \right).\end{split}\]However, in sympy the four parameter vectors are always available separately (see examples), so that there is no need to keep track of the decorating sub- and super-scripts on the G symbol.
The G function is defined as the following integral:
\[\frac{1}{2 \pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s) \prod_{j=n+1}^p \Gamma(a_j - s)} z^s \mathrm{d}s,\]where \(\Gamma(z)\) is the gamma function. There are three possible contours which we will not describe in detail here (see the references). If the integral converges along more than one of them the definitions agree. The contours all separate the poles of \(\Gamma(1-a_j+s)\) from the poles of \(\Gamma(b_k-s)\), so in particular the G function is undefined if \(a_j - b_k \in \mathbb{Z}_{>0}\) for some \(j \le n\) and \(k \le m\).
The conditions under which one of the contours yields a convergent integral are complicated and we do not state them here, see the references.
Note: Currently the Meijer G-function constructor does not check any convergence conditions.
Examples
You can pass the parameters either as four separate vectors:
>>> from ...functions import meijerg >>> from ...abc import x, a >>> from ...core.containers import Tuple >>> from ... import pprint >>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False) __1, 2 /1, 2 a, 4 | \ /__ | | x| \_|4, 1 \ 5 | /
or as two nested vectors:
>>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False) __1, 2 /1, 2 3, 4 | \ /__ | | x| \_|4, 1 \ 5 | /
As with the hypergeometric function, the parameters may be passed as arbitrary iterables. Vectors of length zero and one also have to be passed as iterables. The parameters need not be constants, but if they depend on the argument then not much implemented functionality should be expected.
All the subvectors of parameters are available:
>>> from ... import pprint >>> g = meijerg([1], [2], [3], [4], x) >>> pprint(g, use_unicode=False) __1, 1 /1 2 | \ /__ | | x| \_|2, 2 \3 4 | / >>> g.an (1,) >>> g.ap (1, 2) >>> g.aother (2,) >>> g.bm (3,) >>> g.bq (3, 4) >>> g.bother (4,)
The Meijer G-function generalizes the hypergeometric functions. In some cases it can be expressed in terms of hypergeometric functions, using Slater’s theorem. For example:
>>> from ... import hyperexpand >>> from ...abc import a, b, c >>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True) x**c*gamma(-a + c + 1)*hyper((-a + c + 1,), (-b + c + 1,), -x)/gamma(-b + c + 1)
Thus the Meijer G-function also subsumes many named functions as special cases. You can use expand_func or hyperexpand to (try to) rewrite a Meijer G-function in terms of named special functions. For example:
>>> from ... import expand_func, S >>> expand_func(meijerg([[],[]], [[0],[]], -x)) exp(x) >>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2)) sin(x)/sqrt(pi)
See also
hyper,sympy.simplify.hyperexpandReferences
[1] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1
[2] - property an¶
First set of numerator parameters.
- property aother¶
Second set of numerator parameters.
- property ap¶
Combined numerator parameters.
- property argument¶
Argument of the Meijer G-function.
- property bm¶
First set of denominator parameters.
- property bother¶
Second set of denominator parameters.
- property bq¶
Combined denominator parameters.
- default_assumptions = {'commutative': True}¶
- property delta¶
A quantity related to the convergence region of the integral, c.f. references.
- get_period()[source]¶
Return a number P such that G(x*exp(I*P)) == G(x).
>>> from .hyper import meijerg >>> from ...abc import z >>> from ... import pi, S
>>> meijerg([1], [], [], [], z).get_period() 2*pi >>> meijerg([pi], [], [], [], z).get_period() oo >>> meijerg([1, 2], [], [], [], z).get_period() oo >>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period() 12*pi
- is_commutative = True¶
- property nu¶
A quantity related to the convergence region of the integral, c.f. references.
modelparameters.sympy.functions.special.mathieu_functions module¶
This module contains the Mathieu functions.
- class modelparameters.sympy.functions.special.mathieu_functions.MathieuBase(*args)[source]¶
Bases:
FunctionAbstract base class for Mathieu functions.
This class is meant to reduce code duplication.
- default_assumptions = {}¶
- unbranched = True¶
- class modelparameters.sympy.functions.special.mathieu_functions.mathieuc(a, q, z)[source]¶
Bases:
MathieuBaseThe Mathieu Cosine function C(a,q,z). This function is one solution of the Mathieu differential equation:
\[y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0\]The other solution is the Mathieu Sine function.
Examples
>>> from ... import diff, mathieuc >>> from ...abc import a, q, z
>>> mathieuc(a, q, z) mathieuc(a, q, z)
>>> mathieuc(a, 0, z) cos(sqrt(a)*z)
>>> diff(mathieuc(a, q, z), z) mathieucprime(a, q, z)
See also
mathieusMathieu sine function
mathieusprimeDerivative of Mathieu sine function
mathieucprimeDerivative of Mathieu cosine function
References
[1] [2] [3] [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/
- default_assumptions = {}¶
- classmethod eval(a, q, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)[source]¶
Bases:
MathieuBaseThe derivative C^{prime}(a,q,z) of the Mathieu Cosine function. This function is one solution of the Mathieu differential equation:
\[y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0\]The other solution is the Mathieu Sine function.
Examples
>>> from ... import diff, mathieucprime >>> from ...abc import a, q, z
>>> mathieucprime(a, q, z) mathieucprime(a, q, z)
>>> mathieucprime(a, 0, z) -sqrt(a)*sin(sqrt(a)*z)
>>> diff(mathieucprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieuc(a, q, z)
See also
mathieusMathieu sine function
mathieucMathieu cosine function
mathieusprimeDerivative of Mathieu sine function
References
[1] [2] [3] [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuCPrime/
- default_assumptions = {}¶
- classmethod eval(a, q, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.mathieu_functions.mathieus(a, q, z)[source]¶
Bases:
MathieuBaseThe Mathieu Sine function S(a,q,z). This function is one solution of the Mathieu differential equation:
\[y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0\]The other solution is the Mathieu Cosine function.
Examples
>>> from ... import diff, mathieus >>> from ...abc import a, q, z
>>> mathieus(a, q, z) mathieus(a, q, z)
>>> mathieus(a, 0, z) sin(sqrt(a)*z)
>>> diff(mathieus(a, q, z), z) mathieusprime(a, q, z)
See also
mathieucMathieu cosine function.
mathieusprimeDerivative of Mathieu sine function.
mathieucprimeDerivative of Mathieu cosine function.
References
[1] [2] [3] [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/
- default_assumptions = {}¶
- classmethod eval(a, q, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)[source]¶
Bases:
MathieuBaseThe derivative S^{prime}(a,q,z) of the Mathieu Sine function. This function is one solution of the Mathieu differential equation:
\[y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0\]The other solution is the Mathieu Cosine function.
Examples
>>> from ... import diff, mathieusprime >>> from ...abc import a, q, z
>>> mathieusprime(a, q, z) mathieusprime(a, q, z)
>>> mathieusprime(a, 0, z) sqrt(a)*cos(sqrt(a)*z)
>>> diff(mathieusprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieus(a, q, z)
See also
mathieusMathieu sine function
mathieucMathieu cosine function
mathieucprimeDerivative of Mathieu cosine function
References
[1] [2] [3] [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/
- default_assumptions = {}¶
- classmethod eval(a, q, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
modelparameters.sympy.functions.special.polynomials module¶
This module mainly implements special orthogonal polynomials.
See also functions.combinatorial.numbers which contains some combinatorial polynomials.
- class modelparameters.sympy.functions.special.polynomials.OrthogonalPolynomial(*args)[source]¶
Bases:
FunctionBase class for orthogonal polynomials.
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)[source]¶
Bases:
OrthogonalPolynomialReturns the nth generalized Laguerre polynomial in x, \(L_n(x)\).
- Parameters:
Examples
>>> from ... import laguerre, assoc_laguerre, diff >>> from ...abc import x, n, a >>> assoc_laguerre(0, a, x) 1 >>> assoc_laguerre(1, a, x) a - x + 1 >>> assoc_laguerre(2, a, x) a**2/2 + 3*a/2 + x**2/2 + x*(-a - 2) + 1 >>> assoc_laguerre(3, a, x) a**3/6 + a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) + x*(-a**2/2 - 5*a/2 - 3) + 1
>>> assoc_laguerre(n, a, 0) binomial(a + n, a)
>>> assoc_laguerre(n, a, x) assoc_laguerre(n, a, x)
>>> assoc_laguerre(n, 0, x) laguerre(n, x)
>>> diff(assoc_laguerre(n, a, x), x) -assoc_laguerre(n - 1, a + 1, x)
>>> diff(assoc_laguerre(n, a, x), a) Sum(assoc_laguerre(_k, a, x)/(-a + n), (_k, 0, n - 1))
See also
jacobi,gegenbauer,chebyshevt,chebyshevt_root,chebyshevu,chebyshevu_root,legendre,assoc_legendre,hermite,laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] http://en.wikipedia.org/wiki/Laguerre_polynomial#Assoc_laguerre_polynomials
[2] http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html
[3] [4] - default_assumptions = {}¶
- classmethod eval(n, alpha, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.assoc_legendre(n, m, x)[source]¶
Bases:
Functionassoc_legendre(n,m, x) gives \(P_n^m(x)\), where n and m are the degree and order or an expression which is related to the nth order Legendre polynomial, \(P_n(x)\) in the following manner:
\[P_n^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{\mathrm{d}^m P_n(x)}{\mathrm{d} x^m}\]Associated Legendre polynomial are orthogonal on [-1, 1] with:
weight = 1 for the same m, and different n.
weight = 1/(1-x**2) for the same n, and different m.
Examples
>>> from ... import assoc_legendre >>> from ...abc import x, m, n >>> assoc_legendre(0,0, x) 1 >>> assoc_legendre(1,0, x) x >>> assoc_legendre(1,1, x) -sqrt(-x**2 + 1) >>> assoc_legendre(n,m,x) assoc_legendre(n, m, x)
See also
jacobi,gegenbauer,chebyshevt,chebyshevt_root,chebyshevu,chebyshevu_root,legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] http://en.wikipedia.org/wiki/Associated_Legendre_polynomials
[2] [3] [4] - default_assumptions = {}¶
- classmethod eval(n, m, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.chebyshevt(n, x)[source]¶
Bases:
OrthogonalPolynomialChebyshev polynomial of the first kind, \(T_n(x)\)
chebyshevt(n, x) gives the nth Chebyshev polynomial (of the first kind) in x, \(T_n(x)\).
The Chebyshev polynomials of the first kind are orthogonal on \([-1, 1]\) with respect to the weight \(\frac{1}{\sqrt{1-x^2}}\).
Examples
>>> from ... import chebyshevt, chebyshevu, diff >>> from ...abc import n,x >>> chebyshevt(0, x) 1 >>> chebyshevt(1, x) x >>> chebyshevt(2, x) 2*x**2 - 1
>>> chebyshevt(n, x) chebyshevt(n, x) >>> chebyshevt(n, -x) (-1)**n*chebyshevt(n, x) >>> chebyshevt(-n, x) chebyshevt(n, x)
>>> chebyshevt(n, 0) cos(pi*n/2) >>> chebyshevt(n, -1) (-1)**n
>>> diff(chebyshevt(n, x), x) n*chebyshevu(n - 1, x)
See also
jacobi,gegenbauer,chebyshevt_root,chebyshevu,chebyshevu_root,legendre,assoc_legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
[3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
[4] [5] - default_assumptions = {}¶
- classmethod eval(n, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.chebyshevt_root(n, k)[source]¶
Bases:
Functionchebyshev_root(n, k) returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the first kind; that is, if 0 <= k < n, chebyshevt(n, chebyshevt_root(n, k)) == 0.
Examples
>>> from ... import chebyshevt, chebyshevt_root >>> chebyshevt_root(3, 2) -sqrt(3)/2 >>> chebyshevt(3, chebyshevt_root(3, 2)) 0
See also
jacobi,gegenbauer,chebyshevt,chebyshevu,chebyshevu_root,legendre,assoc_legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_poly- default_assumptions = {}¶
- classmethod eval(n, k)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.chebyshevu(n, x)[source]¶
Bases:
OrthogonalPolynomialChebyshev polynomial of the second kind, \(U_n(x)\)
chebyshevu(n, x) gives the nth Chebyshev polynomial of the second kind in x, \(U_n(x)\).
The Chebyshev polynomials of the second kind are orthogonal on \([-1, 1]\) with respect to the weight \(\sqrt{1-x^2}\).
Examples
>>> from ... import chebyshevt, chebyshevu, diff >>> from ...abc import n,x >>> chebyshevu(0, x) 1 >>> chebyshevu(1, x) 2*x >>> chebyshevu(2, x) 4*x**2 - 1
>>> chebyshevu(n, x) chebyshevu(n, x) >>> chebyshevu(n, -x) (-1)**n*chebyshevu(n, x) >>> chebyshevu(-n, x) -chebyshevu(n - 2, x)
>>> chebyshevu(n, 0) cos(pi*n/2) >>> chebyshevu(n, 1) n + 1
>>> diff(chebyshevu(n, x), x) (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
See also
jacobi,gegenbauer,chebyshevt,chebyshevt_root,chebyshevu_root,legendre,assoc_legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
[3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
[4] [5] - default_assumptions = {}¶
- classmethod eval(n, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.chebyshevu_root(n, k)[source]¶
Bases:
Functionchebyshevu_root(n, k) returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the second kind; that is, if 0 <= k < n, chebyshevu(n, chebyshevu_root(n, k)) == 0.
Examples
>>> from ... import chebyshevu, chebyshevu_root >>> chebyshevu_root(3, 2) -sqrt(2)/2 >>> chebyshevu(3, chebyshevu_root(3, 2)) 0
See also
chebyshevt,chebyshevt_root,chebyshevu,legendre,assoc_legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_poly- default_assumptions = {}¶
- classmethod eval(n, k)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.gegenbauer(n, a, x)[source]¶
Bases:
OrthogonalPolynomialGegenbauer polynomial \(C_n^{\left(\alpha\right)}(x)\)
gegenbauer(n, alpha, x) gives the nth Gegenbauer polynomial in x, \(C_n^{\left(\alpha\right)}(x)\).
The Gegenbauer polynomials are orthogonal on \([-1, 1]\) with respect to the weight \(\left(1-x^2\right)^{\alpha-\frac{1}{2}}\).
Examples
>>> from ... import gegenbauer, conjugate, diff >>> from ...abc import n,a,x >>> gegenbauer(0, a, x) 1 >>> gegenbauer(1, a, x) 2*a*x >>> gegenbauer(2, a, x) -a + x**2*(2*a**2 + 2*a) >>> gegenbauer(3, a, x) x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a)
>>> gegenbauer(n, a, x) gegenbauer(n, a, x) >>> gegenbauer(n, a, -x) (-1)**n*gegenbauer(n, a, x)
>>> gegenbauer(n, a, 0) 2**n*sqrt(pi)*gamma(a + n/2)/(gamma(a)*gamma(-n/2 + 1/2)*gamma(n + 1)) >>> gegenbauer(n, a, 1) gamma(2*a + n)/(gamma(2*a)*gamma(n + 1))
>>> conjugate(gegenbauer(n, a, x)) gegenbauer(n, conjugate(a), conjugate(x))
>>> diff(gegenbauer(n, a, x), x) 2*a*gegenbauer(n - 1, a + 1, x)
See also
jacobi,chebyshevt_root,chebyshevu,chebyshevu_root,legendre,assoc_legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] [2] [3] - default_assumptions = {}¶
- classmethod eval(n, a, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.hermite(n, x)[source]¶
Bases:
OrthogonalPolynomialhermite(n, x) gives the nth Hermite polynomial in x, \(H_n(x)\)
The Hermite polynomials are orthogonal on \((-\infty, \infty)\) with respect to the weight \(\exp\left(-x^2\right)\).
Examples
>>> from ... import hermite, diff >>> from ...abc import x, n >>> hermite(0, x) 1 >>> hermite(1, x) 2*x >>> hermite(2, x) 4*x**2 - 2 >>> hermite(n, x) hermite(n, x) >>> diff(hermite(n,x), x) 2*n*hermite(n - 1, x) >>> hermite(n, -x) (-1)**n*hermite(n, x)
See also
jacobi,gegenbauer,chebyshevt,chebyshevt_root,chebyshevu,chebyshevu_root,legendre,assoc_legendre,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] [2] [3] - default_assumptions = {}¶
- classmethod eval(n, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.jacobi(n, a, b, x)[source]¶
Bases:
OrthogonalPolynomialJacobi polynomial \(P_n^{\left(\alpha, \beta\right)}(x)\)
jacobi(n, alpha, beta, x) gives the nth Jacobi polynomial in x, \(P_n^{\left(\alpha, \beta\right)}(x)\).
The Jacobi polynomials are orthogonal on \([-1, 1]\) with respect to the weight \(\left(1-x\right)^\alpha \left(1+x\right)^\beta\).
Examples
>>> from ... import jacobi, S, conjugate, diff >>> from ...abc import n,a,b,x
>>> jacobi(0, a, b, x) 1 >>> jacobi(1, a, b, x) a/2 - b/2 + x*(a/2 + b/2 + 1) >>> jacobi(2, a, b, x) (a**2/8 - a*b/4 - a/8 + b**2/8 - b/8 + x**2*(a**2/8 + a*b/4 + 7*a/8 + b**2/8 + 7*b/8 + 3/2) + x*(a**2/4 + 3*a/4 - b**2/4 - 3*b/4) - 1/2)
>>> jacobi(n, a, b, x) jacobi(n, a, b, x)
>>> jacobi(n, a, a, x) RisingFactorial(a + 1, n)*gegenbauer(n, a + 1/2, x)/RisingFactorial(2*a + 1, n)
>>> jacobi(n, 0, 0, x) legendre(n, x)
>>> jacobi(n, S(1)/2, S(1)/2, x) RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1)
>>> jacobi(n, -S(1)/2, -S(1)/2, x) RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n)
>>> jacobi(n, a, b, -x) (-1)**n*jacobi(n, b, a, x)
>>> jacobi(n, a, b, 0) 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1)) >>> jacobi(n, a, b, 1) RisingFactorial(a + 1, n)/factorial(n)
>>> conjugate(jacobi(n, a, b, x)) jacobi(n, conjugate(a), conjugate(b), conjugate(x))
>>> diff(jacobi(n,a,b,x), x) (a/2 + b/2 + n/2 + 1/2)*jacobi(n - 1, a + 1, b + 1, x)
See also
gegenbauer,chebyshevt_root,chebyshevu,chebyshevu_root,legendre,assoc_legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] [2] [3] - default_assumptions = {}¶
- classmethod eval(n, a, b, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- modelparameters.sympy.functions.special.polynomials.jacobi_normalized(n, a, b, x)[source]¶
Jacobi polynomial \(P_n^{\left(\alpha, \beta\right)}(x)\)
jacobi_normalized(n, alpha, beta, x) gives the nth Jacobi polynomial in x, \(P_n^{\left(\alpha, \beta\right)}(x)\).
The Jacobi polynomials are orthogonal on \([-1, 1]\) with respect to the weight \(\left(1-x\right)^\alpha \left(1+x\right)^\beta\).
This functions returns the polynomials normilzed:
\[\int_{-1}^{1} P_m^{\left(\alpha, \beta\right)}(x) P_n^{\left(\alpha, \beta\right)}(x) (1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x = \delta_{m,n}\]Examples
>>> from ... import jacobi_normalized >>> from ...abc import n,a,b,x
>>> jacobi_normalized(n, a, b, x) jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))
See also
gegenbauer,chebyshevt_root,chebyshevu,chebyshevu_root,legendre,assoc_legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] [2] [3]
- class modelparameters.sympy.functions.special.polynomials.laguerre(n, x)[source]¶
Bases:
OrthogonalPolynomialReturns the nth Laguerre polynomial in x, \(L_n(x)\).
- Parameters:
n (int) – Degree of Laguerre polynomial. Must be
n >= 0.
Examples
>>> from ... import laguerre, diff >>> from ...abc import x, n >>> laguerre(0, x) 1 >>> laguerre(1, x) -x + 1 >>> laguerre(2, x) x**2/2 - 2*x + 1 >>> laguerre(3, x) -x**3/6 + 3*x**2/2 - 3*x + 1
>>> laguerre(n, x) laguerre(n, x)
>>> diff(laguerre(n, x), x) -assoc_laguerre(n - 1, 1, x)
See also
jacobi,gegenbauer,chebyshevt,chebyshevt_root,chebyshevu,chebyshevu_root,legendre,assoc_legendre,hermite,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(n, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.polynomials.legendre(n, x)[source]¶
Bases:
OrthogonalPolynomiallegendre(n, x) gives the nth Legendre polynomial of x, \(P_n(x)\)
The Legendre polynomials are orthogonal on [-1, 1] with respect to the constant weight 1. They satisfy \(P_n(1) = 1\) for all n; further, \(P_n\) is odd for odd n and even for even n.
Examples
>>> from ... import legendre, diff >>> from ...abc import x, n >>> legendre(0, x) 1 >>> legendre(1, x) x >>> legendre(2, x) 3*x**2/2 - 1/2 >>> legendre(n, x) legendre(n, x) >>> diff(legendre(n,x), x) n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1)
See also
jacobi,gegenbauer,chebyshevt,chebyshevt_root,chebyshevu,chebyshevu_root,assoc_legendre,hermite,laguerre,assoc_laguerre,sympy.polys.orthopolys.jacobi_poly,sympy.polys.orthopolys.gegenbauer_poly,sympy.polys.orthopolys.chebyshevt_poly,sympy.polys.orthopolys.chebyshevu_poly,sympy.polys.orthopolys.hermite_poly,sympy.polys.orthopolys.legendre_poly,sympy.polys.orthopolys.laguerre_polyReferences
[1] [2] [3] [4] - default_assumptions = {}¶
- classmethod eval(n, x)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
modelparameters.sympy.functions.special.singularity_functions module¶
- class modelparameters.sympy.functions.special.singularity_functions.SingularityFunction(variable, offset, exponent)[source]¶
Bases:
FunctionThe Singularity functions are a class of discontinuous functions. They take a variable, an offset and an exponent as arguments. These functions are represented using Macaulay brackets as :
SingularityFunction(x, a, n) := <x - a>^n
The singularity function will automatically evaluate to
Derivative(DiracDelta(x - a), x, -n - 1)ifn < 0and(x - a)**n*Heaviside(x - a)ifn >= 0.Examples
>>> from ... import SingularityFunction, diff, Piecewise, DiracDelta, Heaviside, Symbol >>> from ...abc import x, a, n >>> SingularityFunction(x, a, n) SingularityFunction(x, a, n) >>> y = Symbol('y', positive=True) >>> n = Symbol('n', nonnegative=True) >>> SingularityFunction(y, -10, n) (y + 10)**n >>> y = Symbol('y', negative=True) >>> SingularityFunction(y, 10, n) 0 >>> SingularityFunction(x, 4, -1).subs(x, 4) oo >>> SingularityFunction(x, 10, -2).subs(x, 10) oo >>> SingularityFunction(4, 1, 5) 243 >>> diff(SingularityFunction(x, 1, 5) + SingularityFunction(x, 1, 4), x) 4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4) >>> diff(SingularityFunction(x, 4, 0), x, 2) SingularityFunction(x, 4, -2) >>> SingularityFunction(x, 4, 5).rewrite(Piecewise) Piecewise(((x - 4)**5, x - 4 > 0), (0, True)) >>> expr = SingularityFunction(x, a, n) >>> y = Symbol('y', positive=True) >>> n = Symbol('n', nonnegative=True) >>> expr.subs({x: y, a: -10, n: n}) (y + 10)**n
The methods
rewrite(DiracDelta),rewrite(Heaviside)andrewrite('HeavisideDiracDelta')returns the same output. One can use any of these methods according to their choice.>>> expr = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1) - SingularityFunction(x, 0, -2) >>> expr.rewrite(Heaviside) (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1) >>> expr.rewrite(DiracDelta) (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1) >>> expr.rewrite('HeavisideDiracDelta') (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1)
- default_assumptions = {'commutative': True, 'complex': True, 'hermitian': True, 'imaginary': False, 'real': True}¶
- classmethod eval(variable, offset, exponent)[source]¶
Returns a simplified form or a value of Singularity Function depending on the argument passed by the object.
The
eval()method is automatically called when theSingularityFunctionclass is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words,eval()method is not needed to be called explicitly, it is being called and evaluated once the object is called.Examples
>>> from ... import SingularityFunction, Symbol, nan >>> from ...abc import x, a, n >>> SingularityFunction(x, a, n) SingularityFunction(x, a, n) >>> SingularityFunction(5, 3, 2) 4 >>> SingularityFunction(x, a, nan) nan >>> SingularityFunction(x, 3, 0).subs(x, 3) 1 >>> SingularityFunction(x, a, n).eval(3, 5, 1) 0 >>> SingularityFunction(x, a, n).eval(4, 1, 5) 243 >>> x = Symbol('x', positive = True) >>> a = Symbol('a', negative = True) >>> n = Symbol('n', nonnegative = True) >>> SingularityFunction(x, a, n) (-a + x)**n >>> x = Symbol('x', negative = True) >>> a = Symbol('a', positive = True) >>> SingularityFunction(x, a, n) 0
- fdiff(argindex=1)[source]¶
Returns the first derivative of a DiracDelta Function.
The difference between
diff()andfdiff()is:-diff()is the user-level function andfdiff()is an object method.fdiff()is just a convenience method available in theFunctionclass. It returns the derivative of the function without considering the chain rule.diff(function, x)callsFunction._eval_derivativewhich in turn callsfdiff()internally to compute the derivative of the function.
- is_commutative = True¶
- is_complex = True¶
- is_hermitian = True¶
- is_imaginary = False¶
- is_real = True¶
modelparameters.sympy.functions.special.spherical_harmonics module¶
- class modelparameters.sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)[source]¶
Bases:
FunctionSpherical harmonics defined as
\[Y_n^m(\theta, \varphi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} \exp(i m \varphi) \mathrm{P}_n^m\left(\cos(\theta)\right)\]Ynm() gives the spherical harmonic function of order n and m in theta and varphi, Y_n^m(theta, varphi). The four parameters are as follows: n geq 0 an integer and m an integer such that -n leq m leq n holds. The two angles are real-valued with theta in [0, pi] and varphi in [0, 2pi].
Examples
>>> from ... import Ynm, Symbol >>> from ...abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> Ynm(n, m, theta, phi) Ynm(n, m, theta, phi)
Several symmetries are known, for the order
>>> from ... import Ynm, Symbol >>> from ...abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> Ynm(n, -m, theta, phi) (-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
as well as for the angles
>>> from ... import Ynm, Symbol, simplify >>> from ...abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> Ynm(n, m, -theta, phi) Ynm(n, m, theta, phi)
>>> Ynm(n, m, theta, -phi) exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
For specific integers n and m we can evalute the harmonics to more useful expressions
>>> simplify(Ynm(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi))
>>> simplify(Ynm(1, -1, theta, phi).expand(func=True)) sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(1, 0, theta, phi).expand(func=True)) sqrt(3)*cos(theta)/(2*sqrt(pi))
>>> simplify(Ynm(1, 1, theta, phi).expand(func=True)) -sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(2, -2, theta, phi).expand(func=True)) sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi))
>>> simplify(Ynm(2, -1, theta, phi).expand(func=True)) sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 0, theta, phi).expand(func=True)) sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi))
>>> simplify(Ynm(2, 1, theta, phi).expand(func=True)) -sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 2, theta, phi).expand(func=True)) sqrt(30)*exp(2*I*phi)*sin(theta)**2/(8*sqrt(pi))
We can differentiate the functions with respect to both angles
>>> from ... import Ynm, Symbol, diff >>> from ...abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> diff(Ynm(n, m, theta, phi), theta) m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi)
>>> diff(Ynm(n, m, theta, phi), phi) I*m*Ynm(n, m, theta, phi)
Further we can compute the complex conjugation
>>> from ... import Ynm, Symbol, conjugate >>> from ...abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> conjugate(Ynm(n, m, theta, phi)) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
To get back the well known expressions in spherical coordinates we use full expansion
>>> from ... import Ynm, Symbol, expand_func >>> from ...abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> expand_func(Ynm(n, m, theta, phi)) sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi))
References
[1] [2] [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
[4] - as_real_imag(deep=True, **hints)[source]¶
Performs complex expansion on ‘self’ and returns a tuple containing collected both real and imaginary parts. This method can’t be confused with re() and im() functions, which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function.
>>> from .. import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag() (x, y)
>>> from ..abc import z, w
>>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z))
- default_assumptions = {}¶
- classmethod eval(n, m, theta, phi)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- modelparameters.sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)[source]¶
Conjugate spherical harmonics defined as
\[\overline{Y_n^m(\theta, \varphi)} := (-1)^m Y_n^{-m}(\theta, \varphi)\]References
[1] [2] [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
- class modelparameters.sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)[source]¶
Bases:
FunctionReal spherical harmonics defined as
\[\begin{split}Z_n^m(\theta, \varphi) := \begin{cases} \frac{Y_n^m(\theta, \varphi) + \overline{Y_n^m(\theta, \varphi)}}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - \overline{Y_n^m(\theta, \varphi)}}{i \sqrt{2}} &\quad m < 0 \\ \end{cases}\end{split}\]which gives in simplified form
\[\begin{split}Z_n^m(\theta, \varphi) = \begin{cases} \frac{Y_n^m(\theta, \varphi) + (-1)^m Y_n^{-m}(\theta, \varphi)}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - (-1)^m Y_n^{-m}(\theta, \varphi)}{i \sqrt{2}} &\quad m < 0 \\ \end{cases}\end{split}\]References
[1] [2] [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
- default_assumptions = {}¶
- classmethod eval(n, m, theta, phi)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
modelparameters.sympy.functions.special.tensor_functions module¶
- modelparameters.sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)[source]¶
Represent the Levi-Civita symbol.
This is just compatibility wrapper to
LeviCivita().See also
- class modelparameters.sympy.functions.special.tensor_functions.KroneckerDelta(i, j)[source]¶
Bases:
FunctionThe discrete, or Kronecker, delta function.
A function that takes in two integers i and j. It returns 0 if i and j are not equal or it returns 1 if i and j are equal.
- Parameters:
Examples
A simple example with integer indices:
>>> from .tensor_functions import KroneckerDelta >>> KroneckerDelta(1, 2) 0 >>> KroneckerDelta(3, 3) 1
Symbolic indices:
>>> from ...abc import i, j, k >>> KroneckerDelta(i, j) KroneckerDelta(i, j) >>> KroneckerDelta(i, i) 1 >>> KroneckerDelta(i, i + 1) 0 >>> KroneckerDelta(i, i + 1 + k) KroneckerDelta(i, i + k + 1)
See also
eval,sympy.functions.special.delta_functions.DiracDeltaReferences
[1] - default_assumptions = {'algebraic': True, 'commutative': True, 'complex': True, 'hermitian': True, 'imaginary': False, 'integer': True, 'irrational': False, 'noninteger': False, 'rational': True, 'real': True, 'transcendental': False}¶
- classmethod eval(i, j)[source]¶
Evaluates the discrete delta function.
Examples
>>> from .tensor_functions import KroneckerDelta >>> from ...abc import i, j, k
>>> KroneckerDelta(i, j) KroneckerDelta(i, j) >>> KroneckerDelta(i, i) 1 >>> KroneckerDelta(i, i + 1) 0 >>> KroneckerDelta(i, i + 1 + k) KroneckerDelta(i, i + k + 1)
# indirect doctest
- property indices¶
- property indices_contain_equal_information¶
Returns True if indices are either both above or below fermi.
Examples
>>> from .tensor_functions import KroneckerDelta >>> from ... import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, q).indices_contain_equal_information True >>> KroneckerDelta(p, q+1).indices_contain_equal_information True >>> KroneckerDelta(i, p).indices_contain_equal_information False
- property is_above_fermi¶
True if Delta can be non-zero above fermi
Examples
>>> from .tensor_functions import KroneckerDelta >>> from ... import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_above_fermi True >>> KroneckerDelta(p, i).is_above_fermi False >>> KroneckerDelta(p, q).is_above_fermi True
See also
- is_algebraic = True¶
- property is_below_fermi¶
True if Delta can be non-zero below fermi
Examples
>>> from .tensor_functions import KroneckerDelta >>> from ... import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_below_fermi False >>> KroneckerDelta(p, i).is_below_fermi True >>> KroneckerDelta(p, q).is_below_fermi True
See also
- is_commutative = True¶
- is_complex = True¶
- is_hermitian = True¶
- is_imaginary = False¶
- is_integer = True¶
- is_irrational = False¶
- is_noninteger = False¶
- property is_only_above_fermi¶
True if Delta is restricted to above fermi
Examples
>>> from .tensor_functions import KroneckerDelta >>> from ... import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_only_above_fermi True >>> KroneckerDelta(p, q).is_only_above_fermi False >>> KroneckerDelta(p, i).is_only_above_fermi False
See also
- property is_only_below_fermi¶
True if Delta is restricted to below fermi
Examples
>>> from .tensor_functions import KroneckerDelta >>> from ... import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, i).is_only_below_fermi True >>> KroneckerDelta(p, q).is_only_below_fermi False >>> KroneckerDelta(p, a).is_only_below_fermi False
See also
- is_rational = True¶
- is_real = True¶
- is_transcendental = False¶
- property killable_index¶
Returns the index which is preferred to substitute in the final expression.
The index to substitute is the index with less information regarding fermi level. If indices contain same information, ‘a’ is preferred before ‘b’.
Examples
>>> from .tensor_functions import KroneckerDelta >>> from ... import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> j = Symbol('j', below_fermi=True) >>> p = Symbol('p') >>> KroneckerDelta(p, i).killable_index p >>> KroneckerDelta(p, a).killable_index p >>> KroneckerDelta(i, j).killable_index j
See also
- property preferred_index¶
Returns the index which is preferred to keep in the final expression.
The preferred index is the index with more information regarding fermi level. If indices contain same information, ‘a’ is preferred before ‘b’.
Examples
>>> from .tensor_functions import KroneckerDelta >>> from ... import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> j = Symbol('j', below_fermi=True) >>> p = Symbol('p') >>> KroneckerDelta(p, i).preferred_index i >>> KroneckerDelta(p, a).preferred_index a >>> KroneckerDelta(i, j).preferred_index i
See also
- class modelparameters.sympy.functions.special.tensor_functions.LeviCivita(*args)[source]¶
Bases:
FunctionRepresent the Levi-Civita symbol.
For even permutations of indices it returns 1, for odd permutations -1, and for everything else (a repeated index) it returns 0.
Thus it represents an alternating pseudotensor.
Examples
>>> from ... import LeviCivita >>> from ...abc import i, j, k >>> LeviCivita(1, 2, 3) 1 >>> LeviCivita(1, 3, 2) -1 >>> LeviCivita(1, 2, 2) 0 >>> LeviCivita(i, j, k) LeviCivita(i, j, k) >>> LeviCivita(i, j, i) 0
See also
- default_assumptions = {'algebraic': True, 'commutative': True, 'complex': True, 'hermitian': True, 'imaginary': False, 'integer': True, 'irrational': False, 'noninteger': False, 'rational': True, 'real': True, 'transcendental': False}¶
- doit()[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- classmethod eval(*args)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- is_algebraic = True¶
- is_commutative = True¶
- is_complex = True¶
- is_hermitian = True¶
- is_imaginary = False¶
- is_integer = True¶
- is_irrational = False¶
- is_noninteger = False¶
- is_rational = True¶
- is_real = True¶
- is_transcendental = False¶
modelparameters.sympy.functions.special.zeta_functions module¶
Riemann zeta and related function.
- class modelparameters.sympy.functions.special.zeta_functions.dirichlet_eta(s)[source]¶
Bases:
FunctionDirichlet eta function.
For operatorname{Re}(s) > 0, this function is defined as
\[\eta(s) = \sum_{n=1}^\infty \frac{(-1)^n}{n^s}.\]It admits a unique analytic continuation to all of \(\mathbb{C}\). It is an entire, unbranched function.
See also
References
[1] Examples
The Dirichlet eta function is closely related to the Riemann zeta function:
>>> from ... import dirichlet_eta, zeta >>> from ...abc import s >>> dirichlet_eta(s).rewrite(zeta) (-2**(-s + 1) + 1)*zeta(s)
- default_assumptions = {}¶
- classmethod eval(s)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.zeta_functions.lerchphi(*args)[source]¶
Bases:
FunctionLerch transcendent (Lerch phi function).
For \(\operatorname{Re}(a) > 0\), |z| < 1 and s in mathbb{C}, the Lerch transcendent is defined as
\[\Phi(z, s, a) = \sum_{n=0}^\infty \frac{z^n}{(n + a)^s},\]where the standard branch of the argument is used for \(n + a\), and by analytic continuation for other values of the parameters.
A commonly used related function is the Lerch zeta function, defined by
\[L(q, s, a) = \Phi(e^{2\pi i q}, s, a).\]Analytic Continuation and Branching Behavior
It can be shown that
\[\Phi(z, s, a) = z\Phi(z, s, a+1) + a^{-s}.\]This provides the analytic continuation to operatorname{Re}(a) le 0.
Assume now operatorname{Re}(a) > 0. The integral representation
\[\Phi_0(z, s, a) = \int_0^\infty \frac{t^{s-1} e^{-at}}{1 - ze^{-t}} \frac{\mathrm{d}t}{\Gamma(s)}\]provides an analytic continuation to \(\mathbb{C} - [1, \infty)\). Finally, for \(x \in (1, \infty)\) we find
\[\lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a) -\lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a) = \frac{2\pi i \log^{s-1}{x}}{x^a \Gamma(s)},\]using the standard branch for both \(\log{x}\) and \(\log{\log{x}}\) (a branch of \(\log{\log{x}}\) is needed to evaluate \(\log{x}^{s-1}\)). This concludes the analytic continuation. The Lerch transcendent is thus branched at \(z \in \{0, 1, \infty\}\) and \(a \in \mathbb{Z}_{\le 0}\). For fixed \(z, a\) outside these branch points, it is an entire function of \(s\).
References
[1] Bateman, H.; Erdelyi, A. (1953), Higher Transcendental Functions, Vol. I, New York: McGraw-Hill. Section 1.11.
[2] [3] Examples
The Lerch transcendent is a fairly general function, for this reason it does not automatically evaluate to simpler functions. Use expand_func() to achieve this.
If \(z=1\), the Lerch transcendent reduces to the Hurwitz zeta function:
>>> from ... import lerchphi, expand_func >>> from ...abc import z, s, a >>> expand_func(lerchphi(1, s, a)) zeta(s, a)
More generally, if \(z\) is a root of unity, the Lerch transcendent reduces to a sum of Hurwitz zeta functions:
>>> expand_func(lerchphi(-1, s, a)) 2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, a/2 + 1/2)
If \(a=1\), the Lerch transcendent reduces to the polylogarithm:
>>> expand_func(lerchphi(z, s, 1)) polylog(s, z)/z
More generally, if \(a\) is rational, the Lerch transcendent reduces to a sum of polylogarithms:
>>> from ... import S >>> expand_func(lerchphi(z, s, S(1)/2)) 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z)) >>> expand_func(lerchphi(z, s, S(3)/2)) -2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z
The derivatives with respect to \(z\) and \(a\) can be computed in closed form:
>>> lerchphi(z, s, a).diff(z) (-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z >>> lerchphi(z, s, a).diff(a) -s*lerchphi(z, s + 1, a)
- default_assumptions = {}¶
- class modelparameters.sympy.functions.special.zeta_functions.polylog(s, z)[source]¶
Bases:
FunctionPolylogarithm function.
For \(|z| < 1\) and \(s \in \mathbb{C}\), the polylogarithm is defined by
\[\operatorname{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s},\]where the standard branch of the argument is used for \(n\). It admits an analytic continuation which is branched at \(z=1\) (notably not on the sheet of initial definition), \(z=0\) and \(z=\infty\).
The name polylogarithm comes from the fact that for \(s=1\), the polylogarithm is related to the ordinary logarithm (see examples), and that
\[\operatorname{Li}_{s+1}(z) = \int_0^z \frac{\operatorname{Li}_s(t)}{t} \mathrm{d}t.\]The polylogarithm is a special case of the Lerch transcendent:
\[\operatorname{Li}_{s}(z) = z \Phi(z, s, 1)\]Examples
For \(z \in \{0, 1, -1\}\), the polylogarithm is automatically expressed using other functions:
>>> from ... import polylog >>> from ...abc import s >>> polylog(s, 0) 0 >>> polylog(s, 1) zeta(s) >>> polylog(s, -1) -dirichlet_eta(s)
If \(s\) is a negative integer, \(0\) or \(1\), the polylogarithm can be expressed using elementary functions. This can be done using expand_func():
>>> from ... import expand_func >>> from ...abc import z >>> expand_func(polylog(1, z)) -log(z*exp_polar(-I*pi) + 1) >>> expand_func(polylog(0, z)) z/(-z + 1)
The derivative with respect to \(z\) can be computed in closed form:
>>> polylog(s, z).diff(z) polylog(s - 1, z)/z
The polylogarithm can be expressed in terms of the lerch transcendent:
>>> from ... import lerchphi >>> polylog(s, z).rewrite(lerchphi) z*lerchphi(z, s, 1)
- default_assumptions = {}¶
- classmethod eval(s, z)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.zeta_functions.stieltjes(n, a=None)[source]¶
Bases:
FunctionRepresents Stieltjes constants, \(\gamma_{k}\) that occur in Laurent Series expansion of the Riemann zeta function.
Examples
>>> from ... import stieltjes >>> from ...abc import n, m >>> stieltjes(n) stieltjes(n)
zero’th stieltjes constant
>>> stieltjes(0) EulerGamma >>> stieltjes(0, 1) EulerGamma
For generalized stieltjes constants
>>> stieltjes(n, m) stieltjes(n, m)
Constants are only defined for integers >= 0
>>> stieltjes(-1) zoo
References
[1] - default_assumptions = {}¶
- classmethod eval(n, a=None)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)
- class modelparameters.sympy.functions.special.zeta_functions.zeta(z, a_=None)[source]¶
Bases:
FunctionHurwitz zeta function (or Riemann zeta function).
For operatorname{Re}(a) > 0 and operatorname{Re}(s) > 1, this function is defined as
\[\zeta(s, a) = \sum_{n=0}^\infty \frac{1}{(n + a)^s},\]where the standard choice of argument for \(n + a\) is used. For fixed \(a\) with operatorname{Re}(a) > 0 the Hurwitz zeta function admits a meromorphic continuation to all of \(\mathbb{C}\), it is an unbranched function with a simple pole at \(s = 1\).
Analytic continuation to other \(a\) is possible under some circumstances, but this is not typically done.
The Hurwitz zeta function is a special case of the Lerch transcendent:
\[\zeta(s, a) = \Phi(1, s, a).\]This formula defines an analytic continuation for all possible values of \(s\) and \(a\) (also operatorname{Re}(a) < 0), see the documentation of
lerchphifor a description of the branching behavior.If no value is passed for \(a\), by this function assumes a default value of \(a = 1\), yielding the Riemann zeta function.
See also
References
[1] [2] Examples
For \(a = 1\) the Hurwitz zeta function reduces to the famous Riemann zeta function:
\[\zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}.\]>>> from ... import zeta >>> from ...abc import s >>> zeta(s, 1) zeta(s) >>> zeta(s) zeta(s)
The Riemann zeta function can also be expressed using the Dirichlet eta function:
>>> from ... import dirichlet_eta >>> zeta(s).rewrite(dirichlet_eta) dirichlet_eta(s)/(-2**(-s + 1) + 1)
The Riemann zeta function at positive even integer and negative odd integer values is related to the Bernoulli numbers:
>>> zeta(2) pi**2/6 >>> zeta(4) pi**4/90 >>> zeta(-1) -1/12
The specific formulae are:
\[\zeta(2n) = (-1)^{n+1} \frac{B_{2n} (2\pi)^{2n}}{2(2n)!}\]\[\zeta(-n) = -\frac{B_{n+1}}{n+1}\]At negative even integers the Riemann zeta function is zero:
>>> zeta(-4) 0
No closed-form expressions are known at positive odd integers, but numerical evaluation is possible:
>>> zeta(3).n() 1.20205690315959
The derivative of \(\zeta(s, a)\) with respect to \(a\) is easily computed:
>>> from ...abc import a >>> zeta(s, a).diff(a) -s*zeta(s + 1, a)
However the derivative with respect to \(s\) has no useful closed form expression:
>>> zeta(s, a).diff(s) Derivative(zeta(s, a), s)
The Hurwitz zeta function can be expressed in terms of the Lerch transcendent,
sympy.functions.special.lerchphi:>>> from ... import lerchphi >>> zeta(s, a).rewrite(lerchphi) lerchphi(1, s, a)
- default_assumptions = {}¶
- classmethod eval(z, a_=None)[source]¶
Returns a canonical form of cls applied to arguments args.
The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None.
Examples of eval() for the function “sign”¶
@classmethod def eval(cls, arg):
- if arg is S.NaN:
return S.NaN
if arg is S.Zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul):
coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One:
return cls(coeff) * cls(terms)