modelparameters.sympy.plotting.pygletplot package¶
Submodules¶
modelparameters.sympy.plotting.pygletplot.color_scheme module¶
modelparameters.sympy.plotting.pygletplot.managed_window module¶
modelparameters.sympy.plotting.pygletplot.plot module¶
modelparameters.sympy.plotting.pygletplot.plot_axes module¶
modelparameters.sympy.plotting.pygletplot.plot_camera module¶
modelparameters.sympy.plotting.pygletplot.plot_controller module¶
modelparameters.sympy.plotting.pygletplot.plot_curve module¶
modelparameters.sympy.plotting.pygletplot.plot_interval module¶
modelparameters.sympy.plotting.pygletplot.plot_mode module¶
modelparameters.sympy.plotting.pygletplot.plot_mode_base module¶
modelparameters.sympy.plotting.pygletplot.plot_modes module¶
modelparameters.sympy.plotting.pygletplot.plot_object module¶
modelparameters.sympy.plotting.pygletplot.plot_rotation module¶
modelparameters.sympy.plotting.pygletplot.plot_surface module¶
modelparameters.sympy.plotting.pygletplot.plot_window module¶
modelparameters.sympy.plotting.pygletplot.util module¶
Module contents¶
Plotting module that can plot 2D and 3D functions
- modelparameters.sympy.plotting.pygletplot.PygletPlot(*args, **kwargs)[source]¶
Plot Examples¶
See examples/advanced/pyglet_plotting.py for many more examples.
>>> from ..pygletplot import PygletPlot as Plot >>> from ... import symbols >>> from ...abc import x, y, z
>>> Plot(x*y**3-y*x**3) [0]: -x**3*y + x*y**3, 'mode=cartesian'
>>> p = Plot() >>> p[1] = x*y >>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4)
>>> p = Plot() >>> p[1] = x**2+y**2 >>> p[2] = -x**2-y**2
Variable Intervals¶
The basic format is [var, min, max, steps], but the syntax is flexible and arguments left out are taken from the defaults for the current coordinate mode:
>>> Plot(x**2) # implies [x,-5,5,100] [0]: x**2, 'mode=cartesian'
>>> Plot(x**2, [], []) # [x,-1,1,40], [y,-1,1,40] [0]: x**2, 'mode=cartesian' >>> Plot(x**2-y**2, [100], [100]) # [x,-1,1,100], [y,-1,1,100] [0]: x**2 - y**2, 'mode=cartesian' >>> Plot(x**2, [x,-13,13,100]) [0]: x**2, 'mode=cartesian' >>> Plot(x**2, [-13,13]) # [x,-13,13,100] [0]: x**2, 'mode=cartesian' >>> Plot(x**2, [x,-13,13]) # [x,-13,13,100] [0]: x**2, 'mode=cartesian' >>> Plot(1*x, [], [x], mode='cylindrical') ... # [unbound_theta,0,2*Pi,40], [x,-1,1,20] [0]: x, 'mode=cartesian'
Coordinate Modes¶
Plot supports several curvilinear coordinate modes, and they independent for each plotted function. You can specify a coordinate mode explicitly with the ‘mode’ named argument, but it can be automatically determined for Cartesian or parametric plots, and therefore must only be specified for polar, cylindrical, and spherical modes.
Specifically, Plot(function arguments) and Plot[n] = (function arguments) will interpret your arguments as a Cartesian plot if you provide one function and a parametric plot if you provide two or three functions. Similarly, the arguments will be interpreted as a curve if one variable is used, and a surface if two are used.
Supported mode names by number of variables:
1: parametric, cartesian, polar 2: parametric, cartesian, cylindrical = polar, spherical
>>> Plot(1, mode='spherical')
Calculator-like Interface¶
>>> p = Plot(visible=False) >>> f = x**2 >>> p[1] = f >>> p[2] = f.diff(x) >>> p[3] = f.diff(x).diff(x) >>> p [1]: x**2, 'mode=cartesian' [2]: 2*x, 'mode=cartesian' [3]: 2, 'mode=cartesian' >>> p.show() >>> p.clear() >>> p <blank plot> >>> p[1] = x**2+y**2 >>> p[1].style = 'solid' >>> p[2] = -x**2-y**2 >>> p[2].style = 'wireframe' >>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4) >>> p[1].style = 'both' >>> p[2].style = 'both' >>> p.close()
Plot Window Keyboard Controls¶
- Screen Rotation:
X,Y axis Arrow Keys, A,S,D,W, Numpad 4,6,8,2 Z axis Q,E, Numpad 7,9
- Model Rotation:
Z axis Z,C, Numpad 1,3
Zoom: R,F, PgUp,PgDn, Numpad +,-
Reset Camera: X, Numpad 5
- Camera Presets:
XY F1 XZ F2 YZ F3 Perspective F4
Sensitivity Modifier: SHIFT
- Axes Toggle:
Visible F5 Colors F6
Close Window: ESCAPE