modelparameters.sympy.matrices.expressions package¶
Submodules¶
modelparameters.sympy.matrices.expressions.adjoint module¶
- class modelparameters.sympy.matrices.expressions.adjoint.Adjoint(*args, **kwargs)[source]¶
Bases:
MatrixExpr
The Hermitian adjoint of a matrix expression.
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the adjoint, use the
adjoint()
function.Examples
>>> from ...matrices import MatrixSymbol, Adjoint >>> from ...functions import adjoint >>> A = MatrixSymbol('A', 3, 5) >>> B = MatrixSymbol('B', 5, 3) >>> Adjoint(A*B) Adjoint(A*B) >>> adjoint(A*B) Adjoint(B)*Adjoint(A) >>> adjoint(A*B) == Adjoint(A*B) False >>> adjoint(A*B) == Adjoint(A*B).doit() True
- property arg¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(**hints)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- is_Adjoint = True¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
modelparameters.sympy.matrices.expressions.blockmatrix module¶
- class modelparameters.sympy.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)[source]¶
Bases:
BlockMatrix
A BlockDiagMatrix is a BlockMatrix with matrices only along the diagonal
>>> from ... import MatrixSymbol, BlockDiagMatrix, symbols, Identity >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> BlockDiagMatrix(X, Y) Matrix([ [X, 0], [0, Y]])
- property blocks¶
- property blockshape¶
- property colblocksizes¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- property diag¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property rowblocksizes¶
- property shape¶
- class modelparameters.sympy.matrices.expressions.blockmatrix.BlockMatrix(*args)[source]¶
Bases:
MatrixExpr
A BlockMatrix is a Matrix composed of other smaller, submatrices
The submatrices are stored in a SymPy Matrix object but accessed as part of a Matrix Expression
>>> from ... import (MatrixSymbol, BlockMatrix, symbols, ... Identity, ZeroMatrix, block_collapse) >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]]) >>> print(B) Matrix([ [X, Z], [0, Y]])
>>> C = BlockMatrix([[Identity(n), Z]]) >>> print(C) Matrix([[I, Z]])
>>> print(block_collapse(C*B)) Matrix([[X, Z*Y + Z]])
- property blocks¶
- property blockshape¶
- property colblocksizes¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- equals(other)[source]¶
Test elementwise equality between matrices, potentially of different types
>>> from ... import Identity, eye >>> Identity(3).equals(eye(3)) True
- property is_Identity¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- property is_structurally_symmetric¶
- is_transcendental = False¶
- is_zero = False¶
- property rowblocksizes¶
- property shape¶
- transpose()[source]¶
Return transpose of matrix.
Examples
>>> from ... import MatrixSymbol, BlockMatrix, ZeroMatrix >>> from ...abc import l, m, n >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]]) >>> B.transpose() Matrix([ [X.T, 0], [Z.T, Y.T]]) >>> _.transpose() Matrix([ [X, Z], [0, Y]])
- modelparameters.sympy.matrices.expressions.blockmatrix.bc_dist(expr)[source]¶
Turn a*[X, Y] into [a*X, a*Y]
- modelparameters.sympy.matrices.expressions.blockmatrix.block_collapse(expr)[source]¶
Evaluates a block matrix expression
>>> from ... import MatrixSymbol, BlockMatrix, symbols, Identity, Matrix, ZeroMatrix, block_collapse >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m ,m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]]) >>> print(B) Matrix([ [X, Z], [0, Y]])
>>> C = BlockMatrix([[Identity(n), Z]]) >>> print(C) Matrix([[I, Z]])
>>> print(block_collapse(C*B)) Matrix([[X, Z*Y + Z]])
- modelparameters.sympy.matrices.expressions.blockmatrix.blockcut(expr, rowsizes, colsizes)[source]¶
Cut a matrix expression into Blocks
>>> from ... import ImmutableMatrix, blockcut >>> M = ImmutableMatrix(4, 4, range(16)) >>> B = blockcut(M, (1, 3), (1, 3)) >>> type(B).__name__ 'BlockMatrix' >>> ImmutableMatrix(B.blocks[0, 1]) Matrix([[1, 2, 3]])
- modelparameters.sympy.matrices.expressions.blockmatrix.bounds(sizes)[source]¶
Convert sequence of numbers into pairs of low-high pairs
>>> from .blockmatrix import bounds >>> bounds((1, 10, 50)) [(0, 1), (1, 11), (11, 61)]
modelparameters.sympy.matrices.expressions.determinant module¶
- class modelparameters.sympy.matrices.expressions.determinant.Determinant(mat)[source]¶
Bases:
Expr
Matrix Determinant
Represents the determinant of a matrix expression.
>>> from ... import MatrixSymbol, Determinant, eye >>> A = MatrixSymbol('A', 3, 3) >>> Determinant(A) Determinant(A)
>>> Determinant(eye(3)).doit() 1
- property arg¶
- default_assumptions = {}¶
- doit(expand=False)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
modelparameters.sympy.matrices.expressions.diagonal module¶
- class modelparameters.sympy.matrices.expressions.diagonal.DiagonalMatrix(*args, **kwargs)[source]¶
Bases:
MatrixExpr
DiagonalMatrix(M) will create a matrix expression that behaves as though all off-diagonal elements, M[i, j] where i != j, are zero.
Examples
>>> from ... import MatrixSymbol, DiagonalMatrix, Symbol >>> n = Symbol('n', integer=True) >>> m = Symbol('m', integer=True) >>> D = DiagonalMatrix(MatrixSymbol('x', 2, 3)) >>> D[1, 2] 0 >>> D[1, 1] x[1, 1]
The length of the diagonal – the lesser of the two dimensions of M – is accessed through the diagonal_length property:
>>> D.diagonal_length 2 >>> DiagonalMatrix(MatrixSymbol('x', n + 1, n)).diagonal_length n
When one of the dimensions is symbolic the other will be treated as though it is smaller:
>>> tall = DiagonalMatrix(MatrixSymbol('x', n, 3)) >>> tall.diagonal_length 3 >>> tall[10, 1] 0
When the size of the diagonal is not known, a value of None will be returned:
>>> DiagonalMatrix(MatrixSymbol('x', n, m)).diagonal_length is None True
- property arg¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- property diagonal_length¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
- class modelparameters.sympy.matrices.expressions.diagonal.DiagonalOf(*args, **kwargs)[source]¶
Bases:
MatrixExpr
DiagonalOf(M) will create a matrix expression that is equivalent to the diagonal of M, represented as a single column matrix.
Examples
>>> from ... import MatrixSymbol, DiagonalOf, Symbol >>> n = Symbol('n', integer=True) >>> m = Symbol('m', integer=True) >>> x = MatrixSymbol('x', 2, 3) >>> diag = DiagonalOf(x) >>> diag.shape (2, 1)
The diagonal can be addressed like a matrix or vector and will return the corresponding element of the original matrix:
>>> diag[1, 0] == diag[1] == x[1, 1] True
The length of the diagonal – the lesser of the two dimensions of M – is accessed through the diagonal_length property:
>>> diag.diagonal_length 2 >>> DiagonalOf(MatrixSymbol('x', n + 1, n)).diagonal_length n
When only one of the dimensions is symbolic the other will be treated as though it is smaller:
>>> dtall = DiagonalOf(MatrixSymbol('x', n, 3)) >>> dtall.diagonal_length 3
When the size of the diagonal is not known, a value of None will be returned:
>>> DiagonalOf(MatrixSymbol('x', n, m)).diagonal_length is None True
- property arg¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- property diagonal_length¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
modelparameters.sympy.matrices.expressions.dotproduct module¶
- class modelparameters.sympy.matrices.expressions.dotproduct.DotProduct(arg1, arg2)[source]¶
Bases:
MatrixExpr
Dot product of vector matrices
The input should be two 1 x n or n x 1 matrices. The output represents the scalar dotproduct.
This is similar to using MatrixElement and MatMul, except DotProduct does not require that one vector to be a row vector and the other vector to be a column vector.
>>> from ... import MatrixSymbol, DotProduct >>> A = MatrixSymbol('A', 1, 3) >>> B = MatrixSymbol('B', 1, 3) >>> DotProduct(A, B) DotProduct(A, B) >>> DotProduct(A, B).doit() A[0, 0]*B[0, 0] + A[0, 1]*B[0, 1] + A[0, 2]*B[0, 2]
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(expand=False)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
modelparameters.sympy.matrices.expressions.factorizations module¶
- class modelparameters.sympy.matrices.expressions.factorizations.EigenValues(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.diagonal,)¶
- class modelparameters.sympy.matrices.expressions.factorizations.EigenVectors(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.orthogonal,)¶
- class modelparameters.sympy.matrices.expressions.factorizations.Factorization(*args, **kwargs)[source]¶
Bases:
MatrixExpr
- property arg¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
- class modelparameters.sympy.matrices.expressions.factorizations.LofCholesky(*args, **kwargs)[source]¶
Bases:
LofLU
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- class modelparameters.sympy.matrices.expressions.factorizations.LofLU(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.lower_triangular,)¶
- class modelparameters.sympy.matrices.expressions.factorizations.QofQR(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.orthogonal,)¶
- class modelparameters.sympy.matrices.expressions.factorizations.RofQR(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.upper_triangular,)¶
- class modelparameters.sympy.matrices.expressions.factorizations.SofSVD(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.diagonal,)¶
- class modelparameters.sympy.matrices.expressions.factorizations.UofCholesky(*args, **kwargs)[source]¶
Bases:
UofLU
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- class modelparameters.sympy.matrices.expressions.factorizations.UofLU(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.upper_triangular,)¶
- class modelparameters.sympy.matrices.expressions.factorizations.UofSVD(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.orthogonal,)¶
- class modelparameters.sympy.matrices.expressions.factorizations.VofSVD(*args, **kwargs)[source]¶
Bases:
Factorization
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- predicates = (Q.orthogonal,)¶
modelparameters.sympy.matrices.expressions.fourier module¶
- class modelparameters.sympy.matrices.expressions.fourier.DFT(*args, **kwargs)[source]¶
Bases:
MatrixExpr
Discrete Fourier Transform
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property n¶
- property shape¶
- class modelparameters.sympy.matrices.expressions.fourier.IDFT(*args, **kwargs)[source]¶
Bases:
DFT
Inverse Discrete Fourier Transform
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
modelparameters.sympy.matrices.expressions.funcmatrix module¶
- class modelparameters.sympy.matrices.expressions.funcmatrix.FunctionMatrix(rows, cols, lamda)[source]¶
Bases:
MatrixExpr
Represents a Matrix using a function (Lambda)
This class is an alternative to SparseMatrix
>>> from ... import FunctionMatrix, symbols, Lambda, MatMul, Matrix >>> i, j = symbols('i,j') >>> X = FunctionMatrix(3, 3, Lambda((i, j), i + j)) >>> Matrix(X) Matrix([ [0, 1, 2], [1, 2, 3], [2, 3, 4]])
>>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
>>> isinstance(Y*Y, MatMul) # this is an expression object True
>>> (Y**2)[10,10] # So this is evaluated lazily 342923500
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property lamda¶
- property shape¶
modelparameters.sympy.matrices.expressions.hadamard module¶
- class modelparameters.sympy.matrices.expressions.hadamard.HadamardProduct(*args, **kwargs)[source]¶
Bases:
MatrixExpr
Elementwise product of matrix expressions
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the product, use the function
hadamard_product()
.>>> from ...matrices import hadamard_product, HadamardProduct, MatrixSymbol >>> A = MatrixSymbol('A', 5, 5) >>> B = MatrixSymbol('B', 5, 5) >>> isinstance(hadamard_product(A, B), HadamardProduct) True
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(**ignored)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- is_HadamardProduct = True¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
- modelparameters.sympy.matrices.expressions.hadamard.hadamard_product(*matrices)[source]¶
Return the elementwise (aka Hadamard) product of matrices.
Examples
>>> from ...matrices import hadamard_product, MatrixSymbol >>> A = MatrixSymbol('A', 2, 3) >>> B = MatrixSymbol('B', 2, 3) >>> hadamard_product(A) A >>> hadamard_product(A, B) A.*B >>> hadamard_product(A, B)[0, 1] A[0, 1]*B[0, 1]
modelparameters.sympy.matrices.expressions.inverse module¶
- class modelparameters.sympy.matrices.expressions.inverse.Inverse(mat)[source]¶
Bases:
MatPow
The multiplicative inverse of a matrix expression
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the
.inverse()
method of matrices.Examples
>>> from ... import MatrixSymbol, Inverse >>> A = MatrixSymbol('A', 3, 3) >>> B = MatrixSymbol('B', 3, 3) >>> Inverse(A) A^-1 >>> A.inverse() == Inverse(A) True >>> (A*B).inverse() B^-1*A^-1 >>> Inverse(A*B) (A*B)^-1
- property arg¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(**hints)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- exp = -1¶
- is_Inverse = True¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
modelparameters.sympy.matrices.expressions.matadd module¶
- class modelparameters.sympy.matrices.expressions.matadd.MatAdd(*args, **kwargs)[source]¶
Bases:
MatrixExpr
,AssocOp
A Sum of Matrix Expressions
MatAdd inherits from and operates like SymPy Add
>>> from ... import MatAdd, MatrixSymbol >>> A = MatrixSymbol('A', 5, 5) >>> B = MatrixSymbol('B', 5, 5) >>> C = MatrixSymbol('C', 5, 5) >>> MatAdd(A, B, C) A + B + C
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(**kwargs)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- is_MatAdd = True¶
- is_algebraic = False¶
- is_commutative¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
- modelparameters.sympy.matrices.expressions.matadd.factor_of(arg)¶
- modelparameters.sympy.matrices.expressions.matadd.matrix_of(arg)¶
- modelparameters.sympy.matrices.expressions.matadd.merge_explicit(matadd)[source]¶
Merge explicit MatrixBase arguments
>>> from ... import MatrixSymbol, eye, Matrix, MatAdd, pprint >>> from .matadd import merge_explicit >>> A = MatrixSymbol('A', 2, 2) >>> B = eye(2) >>> C = Matrix([[1, 2], [3, 4]]) >>> X = MatAdd(A, B, C) >>> pprint(X) [1 0] [1 2] A + [ ] + [ ] [0 1] [3 4] >>> pprint(merge_explicit(X)) [2 2] A + [ ] [3 5]
modelparameters.sympy.matrices.expressions.matexpr module¶
- class modelparameters.sympy.matrices.expressions.matexpr.Identity(n)[source]¶
Bases:
MatrixExpr
The Matrix Identity I - multiplicative identity
>>> from ...matrices import Identity, MatrixSymbol >>> A = MatrixSymbol('A', 3, 5) >>> I = Identity(3) >>> I*A A
- property cols¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_Identity = True¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property rows¶
- property shape¶
- class modelparameters.sympy.matrices.expressions.matexpr.MatrixElement(name, n, m)[source]¶
Bases:
Expr
- default_assumptions = {'commutative': True}¶
- doit(**kwargs)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- property i¶
- is_commutative = True¶
- is_symbol = True¶
- property j¶
- property parent¶
- class modelparameters.sympy.matrices.expressions.matexpr.MatrixExpr(*args, **kwargs)[source]¶
Bases:
Basic
Superclass for Matrix Expressions
MatrixExprs represent abstract matrices, linear transformations represented within a particular basis.
Examples
>>> from ... import MatrixSymbol >>> A = MatrixSymbol('A', 3, 3) >>> y = MatrixSymbol('y', 3, 1) >>> x = (A.T*A).I * A * y
- property I¶
- property T¶
Matrix transposition.
- as_explicit()[source]¶
Returns a dense Matrix with elements represented explicitly
Returns an object of type ImmutableDenseMatrix.
Examples
>>> from ... import Identity >>> I = Identity(3) >>> I I >>> I.as_explicit() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]])
See also
as_mutable
returns mutable Matrix type
- as_mutable()[source]¶
Returns a dense, mutable matrix with elements represented explicitly
Examples
>>> from ... import Identity >>> I = Identity(3) >>> I I >>> I.shape (3, 3) >>> I.as_mutable() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]])
See also
as_explicit
returns ImmutableDenseMatrix
- property cols¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- equals(other)[source]¶
Test elementwise equality between matrices, potentially of different types
>>> from ... import Identity, eye >>> Identity(3).equals(eye(3)) True
- is_Identity = None¶
- is_Inverse = False¶
- is_MatAdd = False¶
- is_MatMul = False¶
- is_Matrix = True¶
- is_MatrixExpr = True¶
- is_Transpose = False¶
- is_ZeroMatrix = False¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- property is_square¶
- is_transcendental = False¶
- is_zero = False¶
- property rows¶
- class modelparameters.sympy.matrices.expressions.matexpr.MatrixSymbol(name, n, m)[source]¶
Bases:
MatrixExpr
Symbolic representation of a Matrix object
Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions
>>> from ... import MatrixSymbol, Identity >>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix >>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix >>> A.shape (3, 4) >>> 2*A*B + Identity(3) I + 2*A*B
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(**hints)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- property free_symbols¶
Return from the atoms of self those which are free symbols.
For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method.
Any other method that uses bound variables should implement a free_symbols method.
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property name¶
- property shape¶
- class modelparameters.sympy.matrices.expressions.matexpr.ZeroMatrix(m, n)[source]¶
Bases:
MatrixExpr
The Matrix Zero 0 - additive identity
>>> from ... import MatrixSymbol, ZeroMatrix >>> A = MatrixSymbol('A', 3, 5) >>> Z = ZeroMatrix(3, 5) >>> A+Z A >>> Z*A.T 0
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_ZeroMatrix = True¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
modelparameters.sympy.matrices.expressions.matmul module¶
- class modelparameters.sympy.matrices.expressions.matmul.MatMul(*args, **kwargs)[source]¶
Bases:
MatrixExpr
A product of matrix expressions
Examples
>>> from ... import MatMul, MatrixSymbol >>> A = MatrixSymbol('A', 5, 4) >>> B = MatrixSymbol('B', 4, 3) >>> C = MatrixSymbol('C', 3, 6) >>> MatMul(A, B, C) A*B*C
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(**kwargs)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- is_MatMul = True¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
- modelparameters.sympy.matrices.expressions.matmul.merge_explicit(matmul)[source]¶
Merge explicit MatrixBase arguments
>>> from ... import MatrixSymbol, eye, Matrix, MatMul, pprint >>> from .matmul import merge_explicit >>> A = MatrixSymbol('A', 2, 2) >>> B = Matrix([[1, 1], [1, 1]]) >>> C = Matrix([[1, 2], [3, 4]]) >>> X = MatMul(A, B, C) >>> pprint(X) [1 1] [1 2] A*[ ]*[ ] [1 1] [3 4] >>> pprint(merge_explicit(X)) [4 6] A*[ ] [4 6]
>>> X = MatMul(B, A, C) >>> pprint(X) [1 1] [1 2] [ ]*A*[ ] [1 1] [3 4] >>> pprint(merge_explicit(X)) [1 1] [1 2] [ ]*A*[ ] [1 1] [3 4]
- modelparameters.sympy.matrices.expressions.matmul.only_squares(*matrices)[source]¶
factor matrices only if they are square
- modelparameters.sympy.matrices.expressions.matmul.refine_MatMul(expr, assumptions)[source]¶
>>> from ... import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> expr = X * X.T >>> print(expr) X*X.T >>> with assuming(Q.orthogonal(X)): ... print(refine(expr)) I
- modelparameters.sympy.matrices.expressions.matmul.remove_ids(mul)[source]¶
Remove Identities from a MatMul
This is a modified version of sympy.strategies.rm_id. This is necesssary because MatMul may contain both MatrixExprs and Exprs as args.
modelparameters.sympy.matrices.expressions.matpow module¶
- class modelparameters.sympy.matrices.expressions.matpow.MatPow(base, exp)[source]¶
Bases:
MatrixExpr
- property base¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(**kwargs)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- property exp¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
modelparameters.sympy.matrices.expressions.slice module¶
- class modelparameters.sympy.matrices.expressions.slice.MatrixSlice(parent, rowslice, colslice)[source]¶
Bases:
MatrixExpr
A MatrixSlice of a Matrix Expression
Examples
>>> from ... import MatrixSlice, ImmutableMatrix >>> M = ImmutableMatrix(4, 4, range(16)) >>> M Matrix([ [ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]])
>>> B = MatrixSlice(M, (0, 2), (2, 4)) >>> ImmutableMatrix(B) Matrix([ [2, 3], [6, 7]])
- property colslice¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property on_diag¶
- property parent¶
- property rowslice¶
- property shape¶
modelparameters.sympy.matrices.expressions.trace module¶
- class modelparameters.sympy.matrices.expressions.trace.Trace(mat)[source]¶
Bases:
Expr
Matrix Trace
Represents the trace of a matrix expression.
>>> from ... import MatrixSymbol, Trace, eye >>> A = MatrixSymbol('A', 3, 3) >>> Trace(A) Trace(A)
See also
trace
- property arg¶
- default_assumptions = {}¶
- doit(**kwargs)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- is_Trace = True¶
- modelparameters.sympy.matrices.expressions.trace.trace(expr)[source]¶
Trace of a Matrix. Sum of the diagonal elements
>>> from ... import trace, Symbol, MatrixSymbol, pprint, eye >>> n = Symbol('n') >>> X = MatrixSymbol('X', n, n) # A square matrix >>> trace(2*X) 2*Trace(X)
>>> trace(eye(3)) 3
See also
Trace
modelparameters.sympy.matrices.expressions.transpose module¶
- class modelparameters.sympy.matrices.expressions.transpose.Transpose(*args, **kwargs)[source]¶
Bases:
MatrixExpr
The transpose of a matrix expression.
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the transpose, use the
transpose()
function, or the.T
attribute of matrices.Examples
>>> from ...matrices import MatrixSymbol, Transpose >>> from ...functions import transpose >>> A = MatrixSymbol('A', 3, 5) >>> B = MatrixSymbol('B', 5, 3) >>> Transpose(A) A.T >>> A.T == transpose(A) == Transpose(A) True >>> Transpose(A*B) (A*B).T >>> transpose(A*B) B.T*A.T
- property arg¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- doit(**hints)[source]¶
Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via ‘hints’ or unless the ‘deep’ hint was set to ‘False’.
>>> from .. import Integral >>> from ..abc import x
>>> 2*Integral(x, x) 2*Integral(x, x)
>>> (2*Integral(x, x)).doit() x**2
>>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x)
- is_Transpose = True¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- is_zero = False¶
- property shape¶
Module contents¶
A module which handles Matrix Expressions