modelparameters.sympy.matrices package¶
Subpackages¶
- modelparameters.sympy.matrices.expressions package
- Submodules
- modelparameters.sympy.matrices.expressions.adjoint module
AdjointAdjoint.argAdjoint.default_assumptionsAdjoint.doit()Adjoint.is_AdjointAdjoint.is_algebraicAdjoint.is_commutativeAdjoint.is_complexAdjoint.is_compositeAdjoint.is_evenAdjoint.is_imaginaryAdjoint.is_integerAdjoint.is_irrationalAdjoint.is_negativeAdjoint.is_nonintegerAdjoint.is_nonnegativeAdjoint.is_nonpositiveAdjoint.is_nonzeroAdjoint.is_oddAdjoint.is_positiveAdjoint.is_primeAdjoint.is_rationalAdjoint.is_realAdjoint.is_transcendentalAdjoint.is_zeroAdjoint.shape
- modelparameters.sympy.matrices.expressions.blockmatrix module
BlockDiagMatrixBlockDiagMatrix.blocksBlockDiagMatrix.blockshapeBlockDiagMatrix.colblocksizesBlockDiagMatrix.default_assumptionsBlockDiagMatrix.diagBlockDiagMatrix.is_algebraicBlockDiagMatrix.is_commutativeBlockDiagMatrix.is_complexBlockDiagMatrix.is_compositeBlockDiagMatrix.is_evenBlockDiagMatrix.is_imaginaryBlockDiagMatrix.is_integerBlockDiagMatrix.is_irrationalBlockDiagMatrix.is_negativeBlockDiagMatrix.is_nonintegerBlockDiagMatrix.is_nonnegativeBlockDiagMatrix.is_nonpositiveBlockDiagMatrix.is_nonzeroBlockDiagMatrix.is_oddBlockDiagMatrix.is_positiveBlockDiagMatrix.is_primeBlockDiagMatrix.is_rationalBlockDiagMatrix.is_realBlockDiagMatrix.is_transcendentalBlockDiagMatrix.is_zeroBlockDiagMatrix.rowblocksizesBlockDiagMatrix.shape
BlockMatrixBlockMatrix.as_real_imag()BlockMatrix.blocksBlockMatrix.blockshapeBlockMatrix.colblocksizesBlockMatrix.default_assumptionsBlockMatrix.equals()BlockMatrix.is_IdentityBlockMatrix.is_algebraicBlockMatrix.is_commutativeBlockMatrix.is_complexBlockMatrix.is_compositeBlockMatrix.is_evenBlockMatrix.is_imaginaryBlockMatrix.is_integerBlockMatrix.is_irrationalBlockMatrix.is_negativeBlockMatrix.is_nonintegerBlockMatrix.is_nonnegativeBlockMatrix.is_nonpositiveBlockMatrix.is_nonzeroBlockMatrix.is_oddBlockMatrix.is_positiveBlockMatrix.is_primeBlockMatrix.is_rationalBlockMatrix.is_realBlockMatrix.is_structurally_symmetricBlockMatrix.is_transcendentalBlockMatrix.is_zeroBlockMatrix.rowblocksizesBlockMatrix.shapeBlockMatrix.structurally_equal()BlockMatrix.transpose()
bc_block_plus_ident()bc_dist()bc_inverse()bc_matadd()bc_matmul()bc_transpose()bc_unpack()block_collapse()blockcut()blockinverse_1x1()blockinverse_2x2()bounds()deblock()reblock_2x2()
- modelparameters.sympy.matrices.expressions.determinant module
- modelparameters.sympy.matrices.expressions.diagonal module
DiagonalMatrixDiagonalMatrix.argDiagonalMatrix.default_assumptionsDiagonalMatrix.diagonal_lengthDiagonalMatrix.is_algebraicDiagonalMatrix.is_commutativeDiagonalMatrix.is_complexDiagonalMatrix.is_compositeDiagonalMatrix.is_evenDiagonalMatrix.is_imaginaryDiagonalMatrix.is_integerDiagonalMatrix.is_irrationalDiagonalMatrix.is_negativeDiagonalMatrix.is_nonintegerDiagonalMatrix.is_nonnegativeDiagonalMatrix.is_nonpositiveDiagonalMatrix.is_nonzeroDiagonalMatrix.is_oddDiagonalMatrix.is_positiveDiagonalMatrix.is_primeDiagonalMatrix.is_rationalDiagonalMatrix.is_realDiagonalMatrix.is_transcendentalDiagonalMatrix.is_zeroDiagonalMatrix.shape
DiagonalOfDiagonalOf.argDiagonalOf.default_assumptionsDiagonalOf.diagonal_lengthDiagonalOf.is_algebraicDiagonalOf.is_commutativeDiagonalOf.is_complexDiagonalOf.is_compositeDiagonalOf.is_evenDiagonalOf.is_imaginaryDiagonalOf.is_integerDiagonalOf.is_irrationalDiagonalOf.is_negativeDiagonalOf.is_nonintegerDiagonalOf.is_nonnegativeDiagonalOf.is_nonpositiveDiagonalOf.is_nonzeroDiagonalOf.is_oddDiagonalOf.is_positiveDiagonalOf.is_primeDiagonalOf.is_rationalDiagonalOf.is_realDiagonalOf.is_transcendentalDiagonalOf.is_zeroDiagonalOf.shape
- modelparameters.sympy.matrices.expressions.dotproduct module
DotProductDotProduct.default_assumptionsDotProduct.doit()DotProduct.is_algebraicDotProduct.is_commutativeDotProduct.is_complexDotProduct.is_compositeDotProduct.is_evenDotProduct.is_imaginaryDotProduct.is_integerDotProduct.is_irrationalDotProduct.is_negativeDotProduct.is_nonintegerDotProduct.is_nonnegativeDotProduct.is_nonpositiveDotProduct.is_nonzeroDotProduct.is_oddDotProduct.is_positiveDotProduct.is_primeDotProduct.is_rationalDotProduct.is_realDotProduct.is_transcendentalDotProduct.is_zero
- modelparameters.sympy.matrices.expressions.factorizations module
EigenValuesEigenValues.default_assumptionsEigenValues.is_algebraicEigenValues.is_commutativeEigenValues.is_complexEigenValues.is_compositeEigenValues.is_evenEigenValues.is_imaginaryEigenValues.is_integerEigenValues.is_irrationalEigenValues.is_negativeEigenValues.is_nonintegerEigenValues.is_nonnegativeEigenValues.is_nonpositiveEigenValues.is_nonzeroEigenValues.is_oddEigenValues.is_positiveEigenValues.is_primeEigenValues.is_rationalEigenValues.is_realEigenValues.is_transcendentalEigenValues.is_zeroEigenValues.predicates
EigenVectorsEigenVectors.default_assumptionsEigenVectors.is_algebraicEigenVectors.is_commutativeEigenVectors.is_complexEigenVectors.is_compositeEigenVectors.is_evenEigenVectors.is_imaginaryEigenVectors.is_integerEigenVectors.is_irrationalEigenVectors.is_negativeEigenVectors.is_nonintegerEigenVectors.is_nonnegativeEigenVectors.is_nonpositiveEigenVectors.is_nonzeroEigenVectors.is_oddEigenVectors.is_positiveEigenVectors.is_primeEigenVectors.is_rationalEigenVectors.is_realEigenVectors.is_transcendentalEigenVectors.is_zeroEigenVectors.predicates
FactorizationFactorization.argFactorization.default_assumptionsFactorization.is_algebraicFactorization.is_commutativeFactorization.is_complexFactorization.is_compositeFactorization.is_evenFactorization.is_imaginaryFactorization.is_integerFactorization.is_irrationalFactorization.is_negativeFactorization.is_nonintegerFactorization.is_nonnegativeFactorization.is_nonpositiveFactorization.is_nonzeroFactorization.is_oddFactorization.is_positiveFactorization.is_primeFactorization.is_rationalFactorization.is_realFactorization.is_transcendentalFactorization.is_zeroFactorization.shape
LofCholeskyLofCholesky.default_assumptionsLofCholesky.is_algebraicLofCholesky.is_commutativeLofCholesky.is_complexLofCholesky.is_compositeLofCholesky.is_evenLofCholesky.is_imaginaryLofCholesky.is_integerLofCholesky.is_irrationalLofCholesky.is_negativeLofCholesky.is_nonintegerLofCholesky.is_nonnegativeLofCholesky.is_nonpositiveLofCholesky.is_nonzeroLofCholesky.is_oddLofCholesky.is_positiveLofCholesky.is_primeLofCholesky.is_rationalLofCholesky.is_realLofCholesky.is_transcendentalLofCholesky.is_zero
LofLULofLU.default_assumptionsLofLU.is_algebraicLofLU.is_commutativeLofLU.is_complexLofLU.is_compositeLofLU.is_evenLofLU.is_imaginaryLofLU.is_integerLofLU.is_irrationalLofLU.is_negativeLofLU.is_nonintegerLofLU.is_nonnegativeLofLU.is_nonpositiveLofLU.is_nonzeroLofLU.is_oddLofLU.is_positiveLofLU.is_primeLofLU.is_rationalLofLU.is_realLofLU.is_transcendentalLofLU.is_zeroLofLU.predicates
QofQRQofQR.default_assumptionsQofQR.is_algebraicQofQR.is_commutativeQofQR.is_complexQofQR.is_compositeQofQR.is_evenQofQR.is_imaginaryQofQR.is_integerQofQR.is_irrationalQofQR.is_negativeQofQR.is_nonintegerQofQR.is_nonnegativeQofQR.is_nonpositiveQofQR.is_nonzeroQofQR.is_oddQofQR.is_positiveQofQR.is_primeQofQR.is_rationalQofQR.is_realQofQR.is_transcendentalQofQR.is_zeroQofQR.predicates
RofQRRofQR.default_assumptionsRofQR.is_algebraicRofQR.is_commutativeRofQR.is_complexRofQR.is_compositeRofQR.is_evenRofQR.is_imaginaryRofQR.is_integerRofQR.is_irrationalRofQR.is_negativeRofQR.is_nonintegerRofQR.is_nonnegativeRofQR.is_nonpositiveRofQR.is_nonzeroRofQR.is_oddRofQR.is_positiveRofQR.is_primeRofQR.is_rationalRofQR.is_realRofQR.is_transcendentalRofQR.is_zeroRofQR.predicates
SofSVDSofSVD.default_assumptionsSofSVD.is_algebraicSofSVD.is_commutativeSofSVD.is_complexSofSVD.is_compositeSofSVD.is_evenSofSVD.is_imaginarySofSVD.is_integerSofSVD.is_irrationalSofSVD.is_negativeSofSVD.is_nonintegerSofSVD.is_nonnegativeSofSVD.is_nonpositiveSofSVD.is_nonzeroSofSVD.is_oddSofSVD.is_positiveSofSVD.is_primeSofSVD.is_rationalSofSVD.is_realSofSVD.is_transcendentalSofSVD.is_zeroSofSVD.predicates
UofCholeskyUofCholesky.default_assumptionsUofCholesky.is_algebraicUofCholesky.is_commutativeUofCholesky.is_complexUofCholesky.is_compositeUofCholesky.is_evenUofCholesky.is_imaginaryUofCholesky.is_integerUofCholesky.is_irrationalUofCholesky.is_negativeUofCholesky.is_nonintegerUofCholesky.is_nonnegativeUofCholesky.is_nonpositiveUofCholesky.is_nonzeroUofCholesky.is_oddUofCholesky.is_positiveUofCholesky.is_primeUofCholesky.is_rationalUofCholesky.is_realUofCholesky.is_transcendentalUofCholesky.is_zero
UofLUUofLU.default_assumptionsUofLU.is_algebraicUofLU.is_commutativeUofLU.is_complexUofLU.is_compositeUofLU.is_evenUofLU.is_imaginaryUofLU.is_integerUofLU.is_irrationalUofLU.is_negativeUofLU.is_nonintegerUofLU.is_nonnegativeUofLU.is_nonpositiveUofLU.is_nonzeroUofLU.is_oddUofLU.is_positiveUofLU.is_primeUofLU.is_rationalUofLU.is_realUofLU.is_transcendentalUofLU.is_zeroUofLU.predicates
UofSVDUofSVD.default_assumptionsUofSVD.is_algebraicUofSVD.is_commutativeUofSVD.is_complexUofSVD.is_compositeUofSVD.is_evenUofSVD.is_imaginaryUofSVD.is_integerUofSVD.is_irrationalUofSVD.is_negativeUofSVD.is_nonintegerUofSVD.is_nonnegativeUofSVD.is_nonpositiveUofSVD.is_nonzeroUofSVD.is_oddUofSVD.is_positiveUofSVD.is_primeUofSVD.is_rationalUofSVD.is_realUofSVD.is_transcendentalUofSVD.is_zeroUofSVD.predicates
VofSVDVofSVD.default_assumptionsVofSVD.is_algebraicVofSVD.is_commutativeVofSVD.is_complexVofSVD.is_compositeVofSVD.is_evenVofSVD.is_imaginaryVofSVD.is_integerVofSVD.is_irrationalVofSVD.is_negativeVofSVD.is_nonintegerVofSVD.is_nonnegativeVofSVD.is_nonpositiveVofSVD.is_nonzeroVofSVD.is_oddVofSVD.is_positiveVofSVD.is_primeVofSVD.is_rationalVofSVD.is_realVofSVD.is_transcendentalVofSVD.is_zeroVofSVD.predicates
eig()lu()qr()svd()
- modelparameters.sympy.matrices.expressions.fourier module
DFTDFT.default_assumptionsDFT.is_algebraicDFT.is_commutativeDFT.is_complexDFT.is_compositeDFT.is_evenDFT.is_imaginaryDFT.is_integerDFT.is_irrationalDFT.is_negativeDFT.is_nonintegerDFT.is_nonnegativeDFT.is_nonpositiveDFT.is_nonzeroDFT.is_oddDFT.is_positiveDFT.is_primeDFT.is_rationalDFT.is_realDFT.is_transcendentalDFT.is_zeroDFT.nDFT.shape
IDFTIDFT.default_assumptionsIDFT.is_algebraicIDFT.is_commutativeIDFT.is_complexIDFT.is_compositeIDFT.is_evenIDFT.is_imaginaryIDFT.is_integerIDFT.is_irrationalIDFT.is_negativeIDFT.is_nonintegerIDFT.is_nonnegativeIDFT.is_nonpositiveIDFT.is_nonzeroIDFT.is_oddIDFT.is_positiveIDFT.is_primeIDFT.is_rationalIDFT.is_realIDFT.is_transcendentalIDFT.is_zero
- modelparameters.sympy.matrices.expressions.funcmatrix module
FunctionMatrixFunctionMatrix.as_real_imag()FunctionMatrix.default_assumptionsFunctionMatrix.is_algebraicFunctionMatrix.is_commutativeFunctionMatrix.is_complexFunctionMatrix.is_compositeFunctionMatrix.is_evenFunctionMatrix.is_imaginaryFunctionMatrix.is_integerFunctionMatrix.is_irrationalFunctionMatrix.is_negativeFunctionMatrix.is_nonintegerFunctionMatrix.is_nonnegativeFunctionMatrix.is_nonpositiveFunctionMatrix.is_nonzeroFunctionMatrix.is_oddFunctionMatrix.is_positiveFunctionMatrix.is_primeFunctionMatrix.is_rationalFunctionMatrix.is_realFunctionMatrix.is_transcendentalFunctionMatrix.is_zeroFunctionMatrix.lamdaFunctionMatrix.shape
- modelparameters.sympy.matrices.expressions.hadamard module
HadamardProductHadamardProduct.default_assumptionsHadamardProduct.doit()HadamardProduct.is_HadamardProductHadamardProduct.is_algebraicHadamardProduct.is_commutativeHadamardProduct.is_complexHadamardProduct.is_compositeHadamardProduct.is_evenHadamardProduct.is_imaginaryHadamardProduct.is_integerHadamardProduct.is_irrationalHadamardProduct.is_negativeHadamardProduct.is_nonintegerHadamardProduct.is_nonnegativeHadamardProduct.is_nonpositiveHadamardProduct.is_nonzeroHadamardProduct.is_oddHadamardProduct.is_positiveHadamardProduct.is_primeHadamardProduct.is_rationalHadamardProduct.is_realHadamardProduct.is_transcendentalHadamardProduct.is_zeroHadamardProduct.shape
hadamard_product()validate()
- modelparameters.sympy.matrices.expressions.inverse module
InverseInverse.argInverse.default_assumptionsInverse.doit()Inverse.expInverse.is_InverseInverse.is_algebraicInverse.is_commutativeInverse.is_complexInverse.is_compositeInverse.is_evenInverse.is_imaginaryInverse.is_integerInverse.is_irrationalInverse.is_negativeInverse.is_nonintegerInverse.is_nonnegativeInverse.is_nonpositiveInverse.is_nonzeroInverse.is_oddInverse.is_positiveInverse.is_primeInverse.is_rationalInverse.is_realInverse.is_transcendentalInverse.is_zeroInverse.shape
refine_Inverse()
- modelparameters.sympy.matrices.expressions.matadd module
MatAddMatAdd.default_assumptionsMatAdd.doit()MatAdd.is_MatAddMatAdd.is_algebraicMatAdd.is_commutativeMatAdd.is_complexMatAdd.is_compositeMatAdd.is_evenMatAdd.is_imaginaryMatAdd.is_integerMatAdd.is_irrationalMatAdd.is_negativeMatAdd.is_nonintegerMatAdd.is_nonnegativeMatAdd.is_nonpositiveMatAdd.is_nonzeroMatAdd.is_oddMatAdd.is_positiveMatAdd.is_primeMatAdd.is_rationalMatAdd.is_realMatAdd.is_transcendentalMatAdd.is_zeroMatAdd.shape
combine()factor_of()matrix_of()merge_explicit()validate()
- modelparameters.sympy.matrices.expressions.matexpr module
IdentityIdentity.colsIdentity.conjugate()Identity.default_assumptionsIdentity.is_IdentityIdentity.is_algebraicIdentity.is_commutativeIdentity.is_complexIdentity.is_compositeIdentity.is_evenIdentity.is_imaginaryIdentity.is_integerIdentity.is_irrationalIdentity.is_negativeIdentity.is_nonintegerIdentity.is_nonnegativeIdentity.is_nonpositiveIdentity.is_nonzeroIdentity.is_oddIdentity.is_positiveIdentity.is_primeIdentity.is_rationalIdentity.is_realIdentity.is_transcendentalIdentity.is_zeroIdentity.rowsIdentity.shape
MatrixElementMatrixExprMatrixExpr.IMatrixExpr.TMatrixExpr.adjoint()MatrixExpr.as_coeff_Mul()MatrixExpr.as_coeff_mmul()MatrixExpr.as_explicit()MatrixExpr.as_mutable()MatrixExpr.as_real_imag()MatrixExpr.canonicalize()MatrixExpr.colsMatrixExpr.conjugate()MatrixExpr.default_assumptionsMatrixExpr.equals()MatrixExpr.inverse()MatrixExpr.is_IdentityMatrixExpr.is_InverseMatrixExpr.is_MatAddMatrixExpr.is_MatMulMatrixExpr.is_MatrixMatrixExpr.is_MatrixExprMatrixExpr.is_TransposeMatrixExpr.is_ZeroMatrixMatrixExpr.is_algebraicMatrixExpr.is_commutativeMatrixExpr.is_complexMatrixExpr.is_compositeMatrixExpr.is_evenMatrixExpr.is_imaginaryMatrixExpr.is_integerMatrixExpr.is_irrationalMatrixExpr.is_negativeMatrixExpr.is_nonintegerMatrixExpr.is_nonnegativeMatrixExpr.is_nonpositiveMatrixExpr.is_nonzeroMatrixExpr.is_oddMatrixExpr.is_positiveMatrixExpr.is_primeMatrixExpr.is_rationalMatrixExpr.is_realMatrixExpr.is_squareMatrixExpr.is_transcendentalMatrixExpr.is_zeroMatrixExpr.rowsMatrixExpr.transpose()MatrixExpr.valid_index()
MatrixSymbolMatrixSymbol.default_assumptionsMatrixSymbol.doit()MatrixSymbol.free_symbolsMatrixSymbol.is_algebraicMatrixSymbol.is_commutativeMatrixSymbol.is_complexMatrixSymbol.is_compositeMatrixSymbol.is_evenMatrixSymbol.is_imaginaryMatrixSymbol.is_integerMatrixSymbol.is_irrationalMatrixSymbol.is_negativeMatrixSymbol.is_nonintegerMatrixSymbol.is_nonnegativeMatrixSymbol.is_nonpositiveMatrixSymbol.is_nonzeroMatrixSymbol.is_oddMatrixSymbol.is_positiveMatrixSymbol.is_primeMatrixSymbol.is_rationalMatrixSymbol.is_realMatrixSymbol.is_transcendentalMatrixSymbol.is_zeroMatrixSymbol.nameMatrixSymbol.shape
ZeroMatrixZeroMatrix.conjugate()ZeroMatrix.default_assumptionsZeroMatrix.is_ZeroMatrixZeroMatrix.is_algebraicZeroMatrix.is_commutativeZeroMatrix.is_complexZeroMatrix.is_compositeZeroMatrix.is_evenZeroMatrix.is_imaginaryZeroMatrix.is_integerZeroMatrix.is_irrationalZeroMatrix.is_negativeZeroMatrix.is_nonintegerZeroMatrix.is_nonnegativeZeroMatrix.is_nonpositiveZeroMatrix.is_nonzeroZeroMatrix.is_oddZeroMatrix.is_positiveZeroMatrix.is_primeZeroMatrix.is_rationalZeroMatrix.is_realZeroMatrix.is_transcendentalZeroMatrix.is_zeroZeroMatrix.shape
matrix_symbols()
- modelparameters.sympy.matrices.expressions.matmul module
MatMulMatMul.args_cnc()MatMul.as_coeff_matrices()MatMul.as_coeff_mmul()MatMul.default_assumptionsMatMul.doit()MatMul.is_MatMulMatMul.is_algebraicMatMul.is_commutativeMatMul.is_complexMatMul.is_compositeMatMul.is_evenMatMul.is_imaginaryMatMul.is_integerMatMul.is_irrationalMatMul.is_negativeMatMul.is_nonintegerMatMul.is_nonnegativeMatMul.is_nonpositiveMatMul.is_nonzeroMatMul.is_oddMatMul.is_positiveMatMul.is_primeMatMul.is_rationalMatMul.is_realMatMul.is_transcendentalMatMul.is_zeroMatMul.shape
any_zeros()factor_in_front()merge_explicit()newmul()only_squares()refine_MatMul()remove_ids()validate()xxinv()
- modelparameters.sympy.matrices.expressions.matpow module
MatPowMatPow.baseMatPow.default_assumptionsMatPow.doit()MatPow.expMatPow.is_algebraicMatPow.is_commutativeMatPow.is_complexMatPow.is_compositeMatPow.is_evenMatPow.is_imaginaryMatPow.is_integerMatPow.is_irrationalMatPow.is_negativeMatPow.is_nonintegerMatPow.is_nonnegativeMatPow.is_nonpositiveMatPow.is_nonzeroMatPow.is_oddMatPow.is_positiveMatPow.is_primeMatPow.is_rationalMatPow.is_realMatPow.is_transcendentalMatPow.is_zeroMatPow.shape
- modelparameters.sympy.matrices.expressions.slice module
MatrixSliceMatrixSlice.colsliceMatrixSlice.default_assumptionsMatrixSlice.is_algebraicMatrixSlice.is_commutativeMatrixSlice.is_complexMatrixSlice.is_compositeMatrixSlice.is_evenMatrixSlice.is_imaginaryMatrixSlice.is_integerMatrixSlice.is_irrationalMatrixSlice.is_negativeMatrixSlice.is_nonintegerMatrixSlice.is_nonnegativeMatrixSlice.is_nonpositiveMatrixSlice.is_nonzeroMatrixSlice.is_oddMatrixSlice.is_positiveMatrixSlice.is_primeMatrixSlice.is_rationalMatrixSlice.is_realMatrixSlice.is_transcendentalMatrixSlice.is_zeroMatrixSlice.on_diagMatrixSlice.parentMatrixSlice.rowsliceMatrixSlice.shape
mat_slice_of_slice()normalize()slice_of_slice()
- modelparameters.sympy.matrices.expressions.trace module
- modelparameters.sympy.matrices.expressions.transpose module
TransposeTranspose.argTranspose.default_assumptionsTranspose.doit()Transpose.is_TransposeTranspose.is_algebraicTranspose.is_commutativeTranspose.is_complexTranspose.is_compositeTranspose.is_evenTranspose.is_imaginaryTranspose.is_integerTranspose.is_irrationalTranspose.is_negativeTranspose.is_nonintegerTranspose.is_nonnegativeTranspose.is_nonpositiveTranspose.is_nonzeroTranspose.is_oddTranspose.is_positiveTranspose.is_primeTranspose.is_rationalTranspose.is_realTranspose.is_transcendentalTranspose.is_zeroTranspose.shape
refine_Transpose()transpose()
- Module contents
Submodules¶
modelparameters.sympy.matrices.common module¶
Basic methods common to all matrices to be used when creating more advanced matrices (e.g., matrices over rings, etc.).
- class modelparameters.sympy.matrices.common.MatrixArithmetic[source]¶
Bases:
MatrixRequiredProvides basic matrix arithmetic operations. Should not be instantiated directly.
- multiply_elementwise(other)[source]¶
Return the Hadamard product (elementwise product) of A and B
Examples
>>> from ..matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> A.multiply_elementwise(B) Matrix([ [ 0, 10, 200], [300, 40, 5]])
See also
cross,dot,multiply
- class modelparameters.sympy.matrices.common.MatrixCommon[source]¶
Bases:
MatrixArithmetic,MatrixOperations,MatrixProperties,MatrixSpecial,MatrixShapingAll common matrix operations including basic arithmetic, shaping, and special matrices like zeros, and eye.
- class modelparameters.sympy.matrices.common.MatrixOperations[source]¶
Bases:
MatrixRequiredProvides basic matrix shape and elementwise operations. Should not be instantiated directly.
- property C¶
By-element conjugation.
- property H¶
Return Hermite conjugate.
Examples
>>> from .. import Matrix, I >>> m = Matrix((0, 1 + I, 2, 3)) >>> m Matrix([ [ 0], [1 + I], [ 2], [ 3]]) >>> m.H Matrix([[0, 1 - I, 2, 3]])
See also
conjugateBy-element conjugation
DDirac conjugation
- property T¶
Matrix transposition.
- applyfunc(f)[source]¶
Apply a function to each element of the matrix.
Examples
>>> from .. import Matrix >>> m = Matrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]])
- conjugate()[source]¶
Return the by-element conjugation.
Examples
>>> from ..matrices import SparseMatrix >>> from .. import I >>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I))) >>> a Matrix([ [1, 2 + I], [3, 4], [I, -I]]) >>> a.C Matrix([ [ 1, 2 - I], [ 3, 4], [-I, I]])
- expand(deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints)[source]¶
Apply core.function.expand to each entry of the matrix.
Examples
>>> from ..abc import x >>> from ..matrices import Matrix >>> Matrix(1, 1, [x*(x+1)]) Matrix([[x*(x + 1)]]) >>> _.expand() Matrix([[x**2 + x]])
- n(prec=None, **options)¶
Apply evalf() to each element of self.
- permute(perm, orientation='rows', direction='forward')[source]¶
Permute the rows or columns of a matrix by the given list of swaps.
- Parameters:
perm (a permutation. This may be a list swaps (e.g., [[1, 2], [0, 3]]),) – or any valid input to the Permutation constructor, including a Permutation() itself. If perm is given explicitly as a list of indices or a Permutation, direction has no effect.
orientation (('rows' or 'cols') whether to permute the rows or the columns) –
direction (('forward', 'backward') whether to apply the permutations from) – the start of the list first, or from the back of the list first
Examples
>>> from ..matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward') Matrix([ [0, 0, 1], [1, 0, 0], [0, 1, 0]])
>>> from ..matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward') Matrix([ [0, 1, 0], [0, 0, 1], [1, 0, 0]])
- permute_cols(swaps, direction='forward')[source]¶
Alias for self.permute(swaps, orientation=’cols’, direction=direction)
See also
- permute_rows(swaps, direction='forward')[source]¶
Alias for self.permute(swaps, orientation=’rows’, direction=direction)
See also
- refine(assumptions=True)[source]¶
Apply refine to each element of the matrix.
Examples
>>> from .. import Symbol, Matrix, Abs, sqrt, Q >>> x = Symbol('x') >>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]]) Matrix([ [ Abs(x)**2, sqrt(x**2)], [sqrt(x**2), Abs(x)**2]]) >>> _.refine(Q.real(x)) Matrix([ [ x**2, Abs(x)], [Abs(x), x**2]])
- replace(F, G, map=False)[source]¶
Replaces Function F in Matrix entries with Function G.
Examples
>>> from .. import symbols, Function, Matrix >>> F, G = symbols('F, G', cls=Function) >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M Matrix([ [F(0), F(1)], [F(1), F(2)]]) >>> N = M.replace(F,G) >>> N Matrix([ [G(0), G(1)], [G(1), G(2)]])
- simplify(ratio=1.7, measure=<function count_ops>)[source]¶
Apply simplify to each element of the matrix.
Examples
>>> from ..abc import x, y >>> from .. import sin, cos >>> from ..matrices import SparseMatrix >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) Matrix([[x*sin(y)**2 + x*cos(y)**2]]) >>> _.simplify() Matrix([[x]])
- subs(*args, **kwargs)[source]¶
Return a new matrix with subs applied to each entry.
Examples
>>> from ..abc import x, y >>> from ..matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.subs(x, y) Matrix([[y]]) >>> Matrix(_).subs(y, x) Matrix([[x]])
- trace()[source]¶
Returns the trace of a square matrix i.e. the sum of the diagonal elements.
Examples
>>> from .. import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.trace() 5
- transpose()[source]¶
Returns the transpose of the matrix.
Examples
>>> from .. import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.transpose() Matrix([ [1, 3], [2, 4]])
>>> from .. import Matrix, I >>> m=Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m.transpose() Matrix([ [ 1, 3], [2 + I, 4]]) >>> m.T == m.transpose() True
See also
conjugateBy-element conjugation
- class modelparameters.sympy.matrices.common.MatrixProperties[source]¶
Bases:
MatrixRequiredProvides basic properties of a matrix.
- atoms(*types)[source]¶
Returns the atoms that form the current object.
Examples
>>> from ..abc import x, y >>> from ..matrices import Matrix >>> Matrix([[x]]) Matrix([[x]]) >>> _.atoms() {x}
- property free_symbols¶
Returns the free symbols within the matrix.
Examples
>>> from ..abc import x >>> from ..matrices import Matrix >>> Matrix([[x], [1]]).free_symbols {x}
- has(*patterns)[source]¶
Test whether any subexpression matches any of the patterns.
Examples
>>> from .. import Matrix, SparseMatrix, Float >>> from ..abc import x, y >>> A = Matrix(((1, x), (0.2, 3))) >>> B = SparseMatrix(((1, x), (0.2, 3))) >>> A.has(x) True >>> A.has(y) False >>> A.has(Float) True >>> B.has(x) True >>> B.has(y) False >>> B.has(Float) True
- property is_Identity¶
- is_anti_symmetric(simplify=True)[source]¶
Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i].
When
simplify=True(default), the sum M[i, j] + M[j, i] is simplified before testing to see if it is zero. By default, the SymPy simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives.Examples
>>> from .. import Matrix, symbols >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_anti_symmetric() True >>> x, y = symbols('x y') >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) >>> m Matrix([ [ 0, 0, x], [-y, 0, 0]]) >>> m.is_anti_symmetric() False
>>> from ..abc import x, y >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, ... -(x + 1)**2 , 0, x*y, ... -y, -x*y, 0])
Simplification of matrix elements is done by default so even though two elements which should be equal and opposite wouldn’t pass an equality test, the matrix is still reported as anti-symmetric:
>>> m[0, 1] == -m[1, 0] False >>> m.is_anti_symmetric() True
If ‘simplify=False’ is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric:
>>> m.is_anti_symmetric(simplify=False) False
But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the is_anti_symmetric routine is not needed:
>>> m = m.expand() >>> m.is_anti_symmetric(simplify=False) True
- is_diagonal()[source]¶
Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero.
Examples
>>> from .. import Matrix, diag >>> m = Matrix(2, 2, [1, 0, 0, 2]) >>> m Matrix([ [1, 0], [0, 2]]) >>> m.is_diagonal() True
>>> m = Matrix(2, 2, [1, 1, 0, 2]) >>> m Matrix([ [1, 1], [0, 2]]) >>> m.is_diagonal() False
>>> m = diag(1, 2, 3) >>> m Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> m.is_diagonal() True
- property is_hermitian¶
Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of element j,i.
Examples
>>> from ..matrices import Matrix >>> from .. import I >>> from ..abc import x >>> a = Matrix([[1, I], [-I, 1]]) >>> a Matrix([ [ 1, I], [-I, 1]]) >>> a.is_hermitian True >>> a[0, 0] = 2*I >>> a.is_hermitian False >>> a[0, 0] = x >>> a.is_hermitian >>> a[0, 1] = a[1, 0]*I >>> a.is_hermitian False
- property is_lower¶
Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square.
Examples
>>> from .. import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_lower True
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5]) >>> m Matrix([ [0, 0, 0], [2, 0, 0], [1, 4, 0], [6, 6, 5]]) >>> m.is_lower True
>>> from ..abc import x, y >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) >>> m Matrix([ [x**2 + y, x + y**2], [ 0, x + y]]) >>> m.is_lower False
See also
- property is_lower_hessenberg¶
Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries above the first superdiagonal.
Examples
>>> from ..matrices import Matrix >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a Matrix([ [1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a.is_lower_hessenberg True
See also
- property is_square¶
Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero.
Examples
>>> from .. import Matrix >>> a = Matrix([[1, 2, 3], [4, 5, 6]]) >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> c = Matrix([]) >>> a.is_square False >>> b.is_square True >>> c.is_square True
- is_symbolic()[source]¶
Checks if any elements contain Symbols.
Examples
>>> from ..matrices import Matrix >>> from ..abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.is_symbolic() True
- is_symmetric(simplify=True)[source]¶
Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry. They can be skipped using ‘simplify=False’; while speeding things a bit, this may however induce false negatives.
Examples
>>> from .. import Matrix >>> m = Matrix(2, 2, [0, 1, 1, 2]) >>> m Matrix([ [0, 1], [1, 2]]) >>> m.is_symmetric() True
>>> m = Matrix(2, 2, [0, 1, 2, 0]) >>> m Matrix([ [0, 1], [2, 0]]) >>> m.is_symmetric() False
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) >>> m Matrix([ [0, 0, 0], [0, 0, 0]]) >>> m.is_symmetric() False
>>> from ..abc import x, y >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3]) >>> m Matrix([ [ 1, x**2 + 2*x + 1, y], [(x + 1)**2, 2, 0], [ y, 0, 3]]) >>> m.is_symmetric() True
If the matrix is already simplified, you may speed-up is_symmetric() test by using ‘simplify=False’.
>>> bool(m.is_symmetric(simplify=False)) False >>> m1 = m.expand() >>> m1.is_symmetric(simplify=False) True
- property is_upper¶
Check if matrix is an upper triangular matrix. True can be returned even if the matrix is not square.
Examples
>>> from .. import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_upper True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0]) >>> m Matrix([ [5, 1, 9], [0, 4, 6], [0, 0, 5], [0, 0, 0]]) >>> m.is_upper True
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) >>> m Matrix([ [4, 2, 5], [6, 1, 1]]) >>> m.is_upper False
See also
- property is_upper_hessenberg¶
Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries below the first subdiagonal.
Examples
>>> from ..matrices import Matrix >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a Matrix([ [1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a.is_upper_hessenberg True
See also
- property is_zero¶
Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None
Examples
>>> from .. import Matrix, zeros >>> from ..abc import x >>> a = Matrix([[0, 0], [0, 0]]) >>> b = zeros(3, 4) >>> c = Matrix([[0, 1], [0, 0]]) >>> d = Matrix([]) >>> e = Matrix([[x, 0], [0, 0]]) >>> a.is_zero True >>> b.is_zero True >>> c.is_zero False >>> d.is_zero True >>> e.is_zero
- class modelparameters.sympy.matrices.common.MatrixRequired[source]¶
Bases:
objectAll subclasses of matrix objects must implement the required matrix properties listed here.
- cols = None¶
- rows = None¶
- shape = None¶
- class modelparameters.sympy.matrices.common.MatrixShaping[source]¶
Bases:
MatrixRequiredProvides basic matrix shaping and extracting of submatrices
- col(j)[source]¶
Elementary column selector.
Examples
>>> from .. import eye >>> eye(2).col(0) Matrix([ [1], [0]])
See also
row,col_op,col_swap,col_del,col_join,col_insert
- col_insert(pos, other)[source]¶
Insert one or more columns at the given column position.
Examples
>>> from .. import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.col_insert(1, V) Matrix([ [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]])
See also
- col_join(other)[source]¶
Concatenates two matrices along self’s last and other’s first row.
Examples
>>> from .. import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.col_join(V) Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1]])
- extract(rowsList, colsList)[source]¶
Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range -n <= i < n where n is the number of rows or columns.
Examples
>>> from .. import Matrix >>> m = Matrix(4, 3, range(12)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) >>> m.extract([0, 1, 3], [0, 1]) Matrix([ [0, 1], [3, 4], [9, 10]])
Rows or columns can be repeated:
>>> m.extract([0, 0, 1], [-1]) Matrix([ [2], [2], [5]])
Every other row can be taken by using range to provide the indices:
>>> m.extract(range(0, m.rows, 2), [-1]) Matrix([ [2], [8]])
RowsList or colsList can also be a list of booleans, in which case the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True]) Matrix([ [0, 2], [3, 5], [6, 8], [9, 11]])
- get_diag_blocks()[source]¶
Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal structure.
Examples
>>> from .. import Matrix >>> from ..abc import x, y, z >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) >>> a1, a2, a3 = A.get_diag_blocks() >>> a1 Matrix([ [1, 3], [y, z**2]]) >>> a2 Matrix([[x]]) >>> a3 Matrix([[0]])
- classmethod hstack(*args)[source]¶
Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join).
Examples
>>> from ..matrices import Matrix, eye >>> Matrix.hstack(eye(2), 2*eye(2)) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2]])
- reshape(rows, cols)[source]¶
Reshape the matrix. Total number of elements must remain the same.
Examples
>>> from .. import Matrix >>> m = Matrix(2, 3, lambda i, j: 1) >>> m Matrix([ [1, 1, 1], [1, 1, 1]]) >>> m.reshape(1, 6) Matrix([[1, 1, 1, 1, 1, 1]]) >>> m.reshape(3, 2) Matrix([ [1, 1], [1, 1], [1, 1]])
- row(i)[source]¶
Elementary row selector.
Examples
>>> from .. import eye >>> eye(2).row(0) Matrix([[1, 0]])
See also
col,row_op,row_swap,row_del,row_join,row_insert
- row_insert(pos, other)[source]¶
Insert one or more rows at the given row position.
Examples
>>> from .. import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.row_insert(1, V) Matrix([ [0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0]])
See also
- row_join(other)[source]¶
Concatenates two matrices along self’s last and rhs’s first column
Examples
>>> from .. import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.row_join(V) Matrix([ [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]])
- property shape¶
The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
>>> from ..matrices import zeros >>> M = zeros(2, 3) >>> M.shape (2, 3) >>> M.rows 2 >>> M.cols 3
- tolist()[source]¶
Return the Matrix as a nested Python list.
Examples
>>> from .. import Matrix, ones >>> m = Matrix(3, 3, range(9)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> m.tolist() [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> ones(3, 0).tolist() [[], [], []]
When there are no rows then it will not be possible to tell how many columns were in the original matrix:
>>> ones(0, 3).tolist() []
- class modelparameters.sympy.matrices.common.MatrixSpecial[source]¶
Bases:
MatrixRequiredConstruction of special matrices
- classmethod diag(*args, **kwargs)[source]¶
Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created.
kwargs¶
- rowsrows of the resulting matrix; computed if
not given.
- colscolumns of the resulting matrix; computed if
not given.
cls : class for the resulting matrix
Examples
>>> from ..matrices import Matrix >>> Matrix.diag(1, 2, 3) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> Matrix.diag([1, 2, 3]) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]])
The diagonal elements can be matrices; diagonal filling will continue on the diagonal from the last element of the matrix:
>>> from ..abc import x, y, z >>> a = Matrix([x, y, z]) >>> b = Matrix([[1, 2], [3, 4]]) >>> c = Matrix([[5, 6]]) >>> Matrix.diag(a, 7, b, c) Matrix([ [x, 0, 0, 0, 0, 0], [y, 0, 0, 0, 0, 0], [z, 0, 0, 0, 0, 0], [0, 7, 0, 0, 0, 0], [0, 0, 1, 2, 0, 0], [0, 0, 3, 4, 0, 0], [0, 0, 0, 0, 5, 6]])
A given band off the diagonal can be made by padding with a vertical or horizontal “kerning” vector:
>>> hpad = Matrix(0, 2, []) >>> vpad = Matrix(2, 0, []) >>> Matrix.diag(vpad, 1, 2, 3, hpad) + Matrix.diag(hpad, 4, 5, 6, vpad) Matrix([ [0, 0, 4, 0, 0], [0, 0, 0, 5, 0], [1, 0, 0, 0, 6], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]])
The type of the resulting matrix can be affected with the
clskeyword.>>> type(Matrix.diag(1)) <class 'sympy.matrices.dense.MutableDenseMatrix'> >>> from ..matrices import ImmutableMatrix >>> type(Matrix.diag(1, cls=ImmutableMatrix)) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
- classmethod eye(rows, cols=None, **kwargs)[source]¶
Returns an identity matrix.
- Parameters:
rows (rows of the matrix) –
cols (cols of the matrix (if None, cols=rows)) –
kwargs –
====== –
cls (class of the returned matrix) –
- classmethod jordan_block(*args, **kwargs)[source]¶
Returns a Jordan block with the specified size and eigenvalue. You may call jordan_block with two args (size, eigenvalue) or with keyword arguments.
kwargs¶
size : rows and columns of the matrix rows : rows of the matrix (if None, rows=size) cols : cols of the matrix (if None, cols=size) eigenvalue : value on the diagonal of the matrix band : position of off-diagonal 1s. May be ‘upper’ or
‘lower’. (Default: ‘upper’)
cls : class of the returned matrix
Examples
>>> from .. import Matrix >>> from ..abc import x >>> Matrix.jordan_block(4, x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) >>> Matrix.jordan_block(4, x, band='lower') Matrix([ [x, 0, 0, 0], [1, x, 0, 0], [0, 1, x, 0], [0, 0, 1, x]]) >>> Matrix.jordan_block(size=4, eigenvalue=x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]])
- exception modelparameters.sympy.matrices.common.NonSquareMatrixError[source]¶
Bases:
ShapeError
- exception modelparameters.sympy.matrices.common.ShapeError[source]¶
Bases:
ValueError,MatrixErrorWrong matrix shape
- modelparameters.sympy.matrices.common.a2idx(j, n=None)[source]¶
Return integer after making positive and validating against n.
- modelparameters.sympy.matrices.common.classof(A, B)[source]¶
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
>>> from .. import Matrix, ImmutableMatrix >>> from .matrices import classof >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix >>> IM = ImmutableMatrix([[1, 2], [3, 4]]) >>> classof(M, IM) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
modelparameters.sympy.matrices.dense module¶
- class modelparameters.sympy.matrices.dense.DenseMatrix[source]¶
Bases:
MatrixBase- as_mutable()[source]¶
Returns a mutable version of this matrix
Examples
>>> from .. import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]])
- equals(other, failing_expression=False)[source]¶
Applies
equalsto corresponding elements of the matrices, trying to prove that the elements are equivalent, returning True if they are, False if any pair is not, and None (or the first failing expression if failing_expression is True) if it cannot be decided if the expressions are equivalent or not. This is, in general, an expensive operation.Examples
>>> from ..matrices import Matrix >>> from ..abc import x >>> from .. import cos >>> A = Matrix([x*(x - 1), 0]) >>> B = Matrix([x**2 - x, 0]) >>> A == B False >>> A.simplify() == B.simplify() True >>> A.equals(B) True >>> A.equals(2) False
See also
sympy.core.expr.equals
- is_MatrixExpr = False¶
- modelparameters.sympy.matrices.dense.GramSchmidt(vlist, orthonormal=False)[source]¶
Apply the Gram-Schmidt process to a set of vectors.
see: http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
- modelparameters.sympy.matrices.dense.Matrix¶
alias of
MutableDenseMatrix
- class modelparameters.sympy.matrices.dense.MutableDenseMatrix(*args, **kwargs)[source]¶
Bases:
DenseMatrix,MatrixBase- as_mutable()[source]¶
Returns a mutable version of this matrix
Examples
>>> from .. import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]])
- col_del(i)[source]¶
Delete the given column.
Examples
>>> from ..matrices import eye >>> M = eye(3) >>> M.col_del(1) >>> M Matrix([ [1, 0], [0, 0], [0, 1]])
See also
col,row_del
- col_op(j, f)[source]¶
In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i).
Examples
>>> from ..matrices import eye >>> M = eye(3) >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [1, 2, 0], [0, 1, 0], [0, 0, 1]])
See also
col,row_op
- col_swap(i, j)[source]¶
Swap the two given columns of the matrix in-place.
Examples
>>> from ..matrices import Matrix >>> M = Matrix([[1, 0], [1, 0]]) >>> M Matrix([ [1, 0], [1, 0]]) >>> M.col_swap(0, 1) >>> M Matrix([ [0, 1], [0, 1]])
See also
col,row_swap
- copyin_list(key, value)[source]¶
Copy in elements from a list.
- Parameters:
key (slice) – The section of this matrix to replace.
value (iterable) – The iterable to copy values from.
Examples
>>> from ..matrices import eye >>> I = eye(3) >>> I[:2, 0] = [1, 2] # col >>> I Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) >>> I[1, :2] = [[3, 4]] >>> I Matrix([ [1, 0, 0], [3, 4, 0], [0, 0, 1]])
See also
- copyin_matrix(key, value)[source]¶
Copy in values from a matrix into the given bounds.
- Parameters:
key (slice) – The section of this matrix to replace.
value (Matrix) – The matrix to copy values from.
Examples
>>> from ..matrices import Matrix, eye >>> M = Matrix([[0, 1], [2, 3], [4, 5]]) >>> I = eye(3) >>> I[:3, :2] = M >>> I Matrix([ [0, 1, 0], [2, 3, 0], [4, 5, 1]]) >>> I[0, 1] = M >>> I Matrix([ [0, 0, 1], [2, 2, 3], [4, 4, 5]])
See also
- row_del(i)[source]¶
Delete the given row.
Examples
>>> from ..matrices import eye >>> M = eye(3) >>> M.row_del(1) >>> M Matrix([ [1, 0, 0], [0, 0, 1]])
See also
row,col_del
- row_op(i, f)[source]¶
In-place operation on row
iusing two-arg functor whose args are interpreted as(self[i, j], j).Examples
>>> from ..matrices import eye >>> M = eye(3) >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]])
See also
row,zip_row_op,col_op
- row_swap(i, j)[source]¶
Swap the two given rows of the matrix in-place.
Examples
>>> from ..matrices import Matrix >>> M = Matrix([[0, 1], [1, 0]]) >>> M Matrix([ [0, 1], [1, 0]]) >>> M.row_swap(0, 1) >>> M Matrix([ [1, 0], [0, 1]])
See also
row,col_swap
- modelparameters.sympy.matrices.dense.MutableMatrix¶
alias of
MutableDenseMatrix
- modelparameters.sympy.matrices.dense.casoratian(seqs, n, zero=True)[source]¶
Given linear difference operator L of order ‘k’ and homogeneous equation Ly = 0 we want to compute kernel of L, which is a set of ‘k’ sequences: a(n), b(n), … z(n).
Solutions of L are linearly independent iff their Casoratian, denoted as C(a, b, …, z), do not vanish for n = 0.
Casoratian is defined by k x k determinant:
+ a(n) b(n) . . . z(n) + | a(n+1) b(n+1) . . . z(n+1) | | . . . . | | . . . . | | . . . . | + a(n+k-1) b(n+k-1) . . . z(n+k-1) +
It proves very useful in rsolve_hyper() where it is applied to a generating set of a recurrence to factor out linearly dependent solutions and return a basis:
>>> from .. import Symbol, casoratian, factorial >>> n = Symbol('n', integer=True)
Exponential and factorial are linearly independent:
>>> casoratian([2**n, factorial(n)], n) != 0 True
- modelparameters.sympy.matrices.dense.diag(*values, **kwargs)[source]¶
Create a sparse, diagonal matrix from a list of diagonal values.
Notes
When arguments are matrices they are fitted in resultant matrix.
The returned matrix is a mutable, dense matrix. To make it a different type, send the desired class for keyword
cls.Examples
>>> from ..matrices import diag, Matrix, ones >>> diag(1, 2, 3) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> diag(*[1, 2, 3]) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]])
The diagonal elements can be matrices; diagonal filling will continue on the diagonal from the last element of the matrix:
>>> from ..abc import x, y, z >>> a = Matrix([x, y, z]) >>> b = Matrix([[1, 2], [3, 4]]) >>> c = Matrix([[5, 6]]) >>> diag(a, 7, b, c) Matrix([ [x, 0, 0, 0, 0, 0], [y, 0, 0, 0, 0, 0], [z, 0, 0, 0, 0, 0], [0, 7, 0, 0, 0, 0], [0, 0, 1, 2, 0, 0], [0, 0, 3, 4, 0, 0], [0, 0, 0, 0, 5, 6]])
When diagonal elements are lists, they will be treated as arguments to Matrix:
>>> diag([1, 2, 3], 4) Matrix([ [1, 0], [2, 0], [3, 0], [0, 4]]) >>> diag([[1, 2, 3]], 4) Matrix([ [1, 2, 3, 0], [0, 0, 0, 4]])
A given band off the diagonal can be made by padding with a vertical or horizontal “kerning” vector:
>>> hpad = ones(0, 2) >>> vpad = ones(2, 0) >>> diag(vpad, 1, 2, 3, hpad) + diag(hpad, 4, 5, 6, vpad) Matrix([ [0, 0, 4, 0, 0], [0, 0, 0, 5, 0], [1, 0, 0, 0, 6], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]])
The type is mutable by default but can be made immutable by setting the
mutableflag to False:>>> type(diag(1)) <class 'sympy.matrices.dense.MutableDenseMatrix'> >>> from ..matrices import ImmutableMatrix >>> type(diag(1, cls=ImmutableMatrix)) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
See also
- modelparameters.sympy.matrices.dense.eye(*args, **kwargs)[source]¶
Create square identity matrix n x n
- modelparameters.sympy.matrices.dense.hessian(f, varlist, constraints=[])[source]¶
Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given.
Examples
>>> from .. import Function, hessian, pprint >>> from ..abc import x, y >>> f = Function('f')(x, y) >>> g1 = Function('g')(x, y) >>> g2 = x**2 + 3*y >>> pprint(hessian(f, (x, y), [g1, g2])) [ d d ] [ 0 0 --(g(x, y)) --(g(x, y)) ] [ dx dy ] [ ] [ 0 0 2*x 3 ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))] [dx 2 dy dx ] [ dx ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ] [dy dy dx 2 ] [ dy ]
References
http://en.wikipedia.org/wiki/Hessian_matrix
See also
sympy.matrices.mutable.Matrix.jacobian,wronskian
- modelparameters.sympy.matrices.dense.jordan_cell(eigenval, n)[source]¶
Create a Jordan block:
Examples
>>> from ..matrices import jordan_cell >>> from ..abc import x >>> jordan_cell(x, 4) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]])
- modelparameters.sympy.matrices.dense.list2numpy(l, dtype=<class 'object'>)[source]¶
Converts python list of SymPy expressions to a NumPy array.
See also
- modelparameters.sympy.matrices.dense.matrix2numpy(m, dtype=<class 'object'>)[source]¶
Converts SymPy’s matrix to a NumPy array.
See also
- modelparameters.sympy.matrices.dense.matrix_multiply_elementwise(A, B)[source]¶
Return the Hadamard product (elementwise product) of A and B
>>> from ..matrices import matrix_multiply_elementwise >>> from ..matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> matrix_multiply_elementwise(A, B) Matrix([ [ 0, 10, 200], [300, 40, 5]])
See also
__mul__
- modelparameters.sympy.matrices.dense.ones(*args, **kwargs)[source]¶
Returns a matrix of ones with
rowsrows andcolscolumns; ifcolsis omitted a square matrix will be returned.
- modelparameters.sympy.matrices.dense.randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False, percent=100, prng=None)[source]¶
Create random matrix with dimensions
rxc. Ifcis omitted the matrix will be square. Ifsymmetricis True the matrix must be square. Ifpercentis less than 100 then only approximately the given percentage of elements will be non-zero.The pseudo-random number generator used to generate matrix is chosen in the following way.
If
prngis supplied, it will be used as random number generator. It should be an instance ofrandom.Random, or at least haverandintandshufflemethods with same signatures.if
prngis not supplied butseedis supplied, then newrandom.Randomwith givenseedwill be created;otherwise, a new
random.Randomwith default seed will be used.
Examples
>>> from ..matrices import randMatrix >>> randMatrix(3) [25, 45, 27] [44, 54, 9] [23, 96, 46] >>> randMatrix(3, 2) [87, 29] [23, 37] [90, 26] >>> randMatrix(3, 3, 0, 2) [0, 2, 0] [2, 0, 1] [0, 0, 1] >>> randMatrix(3, symmetric=True) [85, 26, 29] [26, 71, 43] [29, 43, 57] >>> A = randMatrix(3, seed=1) >>> B = randMatrix(3, seed=2) >>> A == B False >>> A == randMatrix(3, seed=1) True >>> randMatrix(3, symmetric=True, percent=50) [0, 68, 43] [0, 68, 0] [0, 91, 34]
- modelparameters.sympy.matrices.dense.rot_axis1(theta)[source]¶
Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.
Examples
>>> from .. import pi >>> from ..matrices import rot_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3 >>> rot_axis1(theta) Matrix([ [1, 0, 0], [0, 1/2, sqrt(3)/2], [0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis1(pi/2) Matrix([ [1, 0, 0], [0, 0, 1], [0, -1, 0]])
- modelparameters.sympy.matrices.dense.rot_axis2(theta)[source]¶
Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis.
Examples
>>> from .. import pi >>> from ..matrices import rot_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3 >>> rot_axis2(theta) Matrix([ [ 1/2, 0, -sqrt(3)/2], [ 0, 1, 0], [sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis2(pi/2) Matrix([ [0, 0, -1], [0, 1, 0], [1, 0, 0]])
- modelparameters.sympy.matrices.dense.rot_axis3(theta)[source]¶
Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.
Examples
>>> from .. import pi >>> from ..matrices import rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3 >>> rot_axis3(theta) Matrix([ [ 1/2, sqrt(3)/2, 0], [-sqrt(3)/2, 1/2, 0], [ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2) Matrix([ [ 0, 1, 0], [-1, 0, 0], [ 0, 0, 1]])
- modelparameters.sympy.matrices.dense.symarray(prefix, shape, **kwargs)[source]¶
Create a numpy ndarray of symbols (as an object array).
The created symbols are named
prefix_i1_i2_… You should thus provide a non-empty prefix if you want your symbols to be unique for different output arrays, as SymPy symbols with identical names are the same object.- Parameters:
Examples
These doctests require numpy.
>>> from .. import symarray >>> symarray('', 3) [_0 _1 _2]
If you want multiple symarrays to contain distinct symbols, you must provide unique prefixes:
>>> a = symarray('', 3) >>> b = symarray('', 3) >>> a[0] == b[0] True >>> a = symarray('a', 3) >>> b = symarray('b', 3) >>> a[0] == b[0] False
Creating symarrays with a prefix:
>>> symarray('a', 3) [a_0 a_1 a_2]
For more than one dimension, the shape must be given as a tuple:
>>> symarray('a', (2, 3)) [[a_0_0 a_0_1 a_0_2] [a_1_0 a_1_1 a_1_2]] >>> symarray('a', (2, 3, 2)) [[[a_0_0_0 a_0_0_1] [a_0_1_0 a_0_1_1] [a_0_2_0 a_0_2_1]] [[a_1_0_0 a_1_0_1] [a_1_1_0 a_1_1_1] [a_1_2_0 a_1_2_1]]]
For setting assumptions of the underlying Symbols:
>>> [s.is_real for s in symarray('a', 2, real=True)] [True, True]
- modelparameters.sympy.matrices.dense.wronskian(functions, var, method='bareiss')[source]¶
Compute Wronskian for [] of functions
| f1 f2 ... fn | | f1' f2' ... fn' | | . . . . | W(f1, ..., fn) = | . . . . | | . . . . | | (n) (n) (n) | | D (f1) D (f2) ... D (fn) |
see: http://en.wikipedia.org/wiki/Wronskian
See also
sympy.matrices.mutable.Matrix.jacobian,hessian
modelparameters.sympy.matrices.densearith module¶
Fundamental arithmetic of dense matrices. The dense matrix is stored as a list of lists.
- modelparameters.sympy.matrices.densearith.add(matlist1, matlist2, K)[source]¶
Adds matrices row-wise.
Examples
>>> from .densearith import add >>> from .. import ZZ >>> e = [ ... [ZZ(12), ZZ(78)], ... [ZZ(56), ZZ(79)]] >>> f = [ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]] >>> g = [ ... [ZZ.zero, ZZ.zero], ... [ZZ.zero, ZZ.zero]] >>> add(e, f, ZZ) [[13, 80], [59, 83]] >>> add(f, g, ZZ) [[1, 2], [3, 4]]
See also
- modelparameters.sympy.matrices.densearith.addrow(row1, row2, K)[source]¶
Adds two rows of a matrix element-wise.
Examples
>>> from .densearith import addrow >>> from .. import ZZ
>>> a = [ZZ(12), ZZ(34), ZZ(56)] >>> b = [ZZ(14), ZZ(56), ZZ(63)] >>> c = [ZZ(0), ZZ(0), ZZ(0)]
>>> addrow(a, b, ZZ) [26, 90, 119] >>> addrow(b, c, ZZ) [14, 56, 63]
- modelparameters.sympy.matrices.densearith.mulmatmat(matlist1, matlist2, K)[source]¶
Multiplies two matrices by multiplying each row with each column at a time. The multiplication of row and column is done with mulrowcol.
Firstly, the second matrix is converted from a list of rows to a list of columns using zip and then multiplication is done.
Examples
>>> from .densearith import mulmatmat >>> from .. import ZZ >>> from .densetools import eye >>> a = [ ... [ZZ(3), ZZ(4)], ... [ZZ(5), ZZ(6)]] >>> b = [ ... [ZZ(1), ZZ(2)], ... [ZZ(7), ZZ(8)]] >>> c = eye(2, ZZ) >>> mulmatmat(a, b, ZZ) [[31, 38], [47, 58]] >>> mulmatmat(a, c, ZZ) [[3, 4], [5, 6]]
See also
- modelparameters.sympy.matrices.densearith.mulmatscaler(matlist, scaler, K)[source]¶
Performs scaler matrix multiplication one row at at time. The row-scaler multiplication is done using mulrowscaler.
Examples
>>> from .. import ZZ >>> from .densearith import mulmatscaler >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> mulmatscaler(a, ZZ(1), ZZ) [[3, 7, 4], [2, 4, 5], [6, 2, 3]]
See also
mulscalerrow
- modelparameters.sympy.matrices.densearith.mulrowcol(row, col, K)[source]¶
Multiplies two lists representing row and column element-wise.
Gotcha: Here the column is represented as a list contrary to the norm where it is represented as a list of one element lists. The reason is that the theoretically correct approach is too expensive. This problem is expected to be removed later as we have a good data structure to facilitate column operations.
Examples
>>> from .densearith import mulrowcol >>> from .. import ZZ
>>> a = [ZZ(2), ZZ(4), ZZ(6)] >>> mulrowcol(a, a, ZZ) 56
- modelparameters.sympy.matrices.densearith.mulrowscaler(row, scaler, K)[source]¶
Performs the scaler-row multiplication element-wise.
Examples
>>> from .. import ZZ >>> from .densearith import mulrowscaler >>> a = [ZZ(3), ZZ(4), ZZ(5)] >>> mulrowscaler(a, 2, ZZ) [6, 8, 10]
- modelparameters.sympy.matrices.densearith.negate(matlist, K)[source]¶
Negates the elements of a matrix row-wise.
Examples
>>> from .densearith import negate >>> from .. import ZZ >>> a = [ ... [ZZ(2), ZZ(3)], ... [ZZ(4), ZZ(5)]] >>> b = [ ... [ZZ(0), ZZ(0)], ... [ZZ(0), ZZ(0)]] >>> negate(a, ZZ) [[-2, -3], [-4, -5]] >>> negate(b, ZZ) [[0, 0], [0, 0]]
See also
- modelparameters.sympy.matrices.densearith.negaterow(row, K)[source]¶
Negates a row element-wise.
Examples
>>> from .densearith import negaterow >>> from .. import ZZ >>> a = [ZZ(2), ZZ(3), ZZ(4)] >>> b = [ZZ(0), ZZ(0), ZZ(0)] >>> negaterow(a, ZZ) [-2, -3, -4] >>> negaterow(b, ZZ) [0, 0, 0]
- modelparameters.sympy.matrices.densearith.sub(matlist1, matlist2, K)[source]¶
Subtracts two matrices by first negating the second matrix and then adding it to first matrix.
Examples
>>> from .densearith import sub >>> from .. import ZZ >>> e = [ ... [ZZ(12), ZZ(78)], ... [ZZ(56), ZZ(79)]] >>> f = [ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]] >>> g = [ ... [ZZ.zero, ZZ.zero], ... [ZZ.zero, ZZ.zero]] >>> sub(e, f, ZZ) [[11, 76], [53, 75]] >>> sub(f, g, ZZ) [[1, 2], [3, 4]]
modelparameters.sympy.matrices.densesolve module¶
Solution of equations using dense matrices.
The dense matrix is stored as a list of lists.
- modelparameters.sympy.matrices.densesolve.LDL(matlist, K)[source]¶
Performs the LDL decomposition of a hermitian matrix and returns L, D and transpose of L. Only applicable to rational entries.
Examples
>>> from .densesolve import LDL >>> from .. import QQ
>>> a = [ ... [QQ(4), QQ(12), QQ(-16)], ... [QQ(12), QQ(37), QQ(-43)], ... [QQ(-16), QQ(-43), QQ(98)]] >>> LDL(a, QQ) ([[1, 0, 0], [3, 1, 0], [-4, 5, 1]], [[4, 0, 0], [0, 1, 0], [0, 0, 9]], [[1, 3, -4], [0, 1, 5], [0, 0, 1]])
- modelparameters.sympy.matrices.densesolve.LU(matlist, K, reverse=0)[source]¶
It computes the LU decomposition of a matrix and returns L and U matrices.
Examples
>>> from .densesolve import LU >>> from .. import QQ >>> a = [ ... [QQ(1), QQ(2), QQ(3)], ... [QQ(2), QQ(-4), QQ(6)], ... [QQ(3), QQ(-9), QQ(-3)]] >>> LU(a, QQ) ([[1, 0, 0], [2, 1, 0], [3, 15/8, 1]], [[1, 2, 3], [0, -8, 0], [0, 0, -12]])
See also
- modelparameters.sympy.matrices.densesolve.LU_solve(matlist, variable, constant, K)[source]¶
Solves a system of equations using LU decomposition given a matrix of coefficients, a vector of variables and a vector of constants.
Examples
>>> from .densesolve import LU_solve >>> from .. import QQ >>> from .. import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> coefficients = [ ... [QQ(2), QQ(-1), QQ(-2)], ... [QQ(-4), QQ(6), QQ(3)], ... [QQ(-4), QQ(-2), QQ(8)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> constants = [ ... [QQ(-1)], ... [QQ(13)], ... [QQ(-6)]] >>> LU_solve(coefficients, variables, constants, QQ) [[2], [3], [1]]
See also
- modelparameters.sympy.matrices.densesolve.backward_substitution(upper_triangle, variable, constant, K)[source]¶
Performs forward substitution given a lower triangular matrix, a vector of variables and a vector constants.
Examples
>>> from .densesolve import backward_substitution >>> from .. import QQ >>> from .. import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> a = [ ... [QQ(2), QQ(-1), QQ(-2)], ... [QQ(0), QQ(4), QQ(-1)], ... [QQ(0), QQ(0), QQ(3)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> constants = [ ... [QQ(-1)], ... [QQ(11)], ... [QQ(3)]] >>> backward_substitution(a, variables, constants, QQ) [[2], [3], [1]]
See also
- modelparameters.sympy.matrices.densesolve.cholesky(matlist, K)[source]¶
Performs the cholesky decomposition of a Hermitian matrix and returns L and it’s conjugate transpose.
Examples
>>> from .densesolve import cholesky >>> from .. import QQ >>> cholesky([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], QQ) ([[5, 0, 0], [3, 3, 0], [-1, 1, 3]], [[5, 3, -1], [0, 3, 1], [0, 0, 3]])
See also
- modelparameters.sympy.matrices.densesolve.cholesky_solve(matlist, variable, constant, K)[source]¶
Solves a system of equations using Cholesky decomposition given a matrix of coefficients, a vector of variables and a vector of constants.
Examples
>>> from .densesolve import cholesky_solve >>> from .. import QQ >>> from .. import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> coefficients = [ ... [QQ(25), QQ(15), QQ(-5)], ... [QQ(15), QQ(18), QQ(0)], ... [QQ(-5), QQ(0), QQ(11)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> coefficients = [ ... [QQ(2)], ... [QQ(3)], ... [QQ(1)]] >>> cholesky_solve([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], [[x], [y], [z]], [[QQ(2)], [QQ(3)], [QQ(1)]], QQ) [[-1/225], [23/135], [4/45]]
See also
- modelparameters.sympy.matrices.densesolve.forward_substitution(lower_triangle, variable, constant, K)[source]¶
Performs forward substitution given a lower triangular matrix, a vector of variables and a vector of constants.
Examples
>>> from .densesolve import forward_substitution >>> from .. import QQ >>> from .. import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> a = [ ... [QQ(1), QQ(0), QQ(0)], ... [QQ(-2), QQ(1), QQ(0)], ... [QQ(-2), QQ(-1), QQ(1)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> constants = [ ... [QQ(-1)], ... [QQ(13)], ... [QQ(-6)]] >>> forward_substitution(a, variables, constants, QQ) [[-1], [11], [3]]
See also
- modelparameters.sympy.matrices.densesolve.lower_triangle(matlist, K)[source]¶
Transforms a given matrix to a lower triangle matrix by performing row operations on it.
Examples
>>> from .densesolve import lower_triangle >>> from .. import QQ >>> a = [ ... [QQ(4,1), QQ(12,1), QQ(-16)], ... [QQ(12,1), QQ(37,1), QQ(-43,1)], ... [QQ(-16,1), QQ(-43,1), QQ(98,1)]] >>> lower_triangle(a, QQ) [[1, 0, 0], [3, 1, 0], [-4, 5, 1]]
See also
- modelparameters.sympy.matrices.densesolve.row_echelon(matlist, K)[source]¶
Returns the row echelon form of a matrix with diagonal elements reduced to 1.
Examples
>>> from .densesolve import row_echelon >>> from .. import QQ >>> a = [ ... [QQ(3), QQ(7), QQ(4)], ... [QQ(2), QQ(4), QQ(5)], ... [QQ(6), QQ(2), QQ(3)]] >>> row_echelon(a, QQ) [[1, 7/3, 4/3], [0, 1, -7/2], [0, 0, 1]]
See also
- modelparameters.sympy.matrices.densesolve.rref(matlist, K)[source]¶
Returns the reduced row echelon form of a Matrix.
Examples
>>> from .densesolve import rref >>> from .. import QQ >>> a = [ ... [QQ(1), QQ(2), QQ(1)], ... [QQ(-2), QQ(-3), QQ(1)], ... [QQ(3), QQ(5), QQ(0)]] >>> rref(a, QQ) [[1, 0, -5], [0, 1, 3], [0, 0, 0]]
See also
- modelparameters.sympy.matrices.densesolve.rref_solve(matlist, variable, constant, K)[source]¶
Solves a system of equations using reduced row echelon form given a matrix of coefficients, a vector of variables and a vector of constants.
Examples
>>> from .densesolve import rref_solve >>> from .. import QQ >>> from .. import Dummy >>> x, y, z = Dummy('x'), Dummy('y'), Dummy('z') >>> coefficients = [ ... [QQ(25), QQ(15), QQ(-5)], ... [QQ(15), QQ(18), QQ(0)], ... [QQ(-5), QQ(0), QQ(11)]] >>> constants = [ ... [QQ(2)], ... [QQ(3)], ... [QQ(1)]] >>> variables = [ ... [x], ... [y], ... [z]] >>> rref_solve(coefficients, variables, constants, QQ) [[-1/225], [23/135], [4/45]]
See also
row_echelon,augment
- modelparameters.sympy.matrices.densesolve.upper_triangle(matlist, K)[source]¶
Transforms a given matrix to an upper triangle matrix by performing row operations on it.
Examples
>>> from .densesolve import upper_triangle >>> from .. import QQ >>> a = [ ... [QQ(4,1), QQ(12,1), QQ(-16,1)], ... [QQ(12,1), QQ(37,1), QQ(-43,1)], ... [QQ(-16,1), QQ(-43,1), QQ(98,1)]] >>> upper_triangle(a, QQ) [[4, 12, -16], [0, 1, 5], [0, 0, 9]]
See also
modelparameters.sympy.matrices.densetools module¶
Fundamental operations of dense matrices. The dense matrix is stored as a list of lists
- modelparameters.sympy.matrices.densetools.augment(matlist, column, K)[source]¶
Augments a matrix and a column.
Examples
>>> from .densetools import augment >>> from .. import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> b = [ ... [ZZ(4)], ... [ZZ(5)], ... [ZZ(6)]] >>> augment(a, b, ZZ) [[3, 7, 4, 4], [2, 4, 5, 5], [6, 2, 3, 6]]
- modelparameters.sympy.matrices.densetools.col(matlist, i)[source]¶
Returns the ith column of a matrix Note: Currently very expensive
Examples
>>> from .densetools import col >>> from .. import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> col(a, 1) [[7], [4], [2]]
- modelparameters.sympy.matrices.densetools.conjugate(matlist, K)[source]¶
Returns the conjugate of a matrix row-wise.
Examples
>>> from .densetools import conjugate >>> from .. import ZZ >>> a = [ ... [ZZ(3), ZZ(2), ZZ(6)], ... [ZZ(7), ZZ(4), ZZ(2)], ... [ZZ(4), ZZ(5), ZZ(3)]] >>> conjugate(a, ZZ) [[3, 2, 6], [7, 4, 2], [4, 5, 3]]
See also
- modelparameters.sympy.matrices.densetools.conjugate_row(row, K)[source]¶
Returns the conjugate of a row element-wise
Examples
>>> from .densetools import conjugate_row >>> from .. import ZZ >>> a = [ZZ(3), ZZ(2), ZZ(6)] >>> conjugate_row(a, ZZ) [3, 2, 6]
- modelparameters.sympy.matrices.densetools.conjugate_transpose(matlist, K)[source]¶
Returns the conjugate-transpose of a matrix
Examples
>>> from .. import ZZ >>> from .densetools import conjugate_transpose >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> conjugate_transpose(a, ZZ) [[3, 2, 6], [7, 4, 2], [4, 5, 3]]
- modelparameters.sympy.matrices.densetools.eye(n, K)[source]¶
Returns an identity matrix of size n.
Examples
>>> from .densetools import eye >>> from .. import ZZ >>> eye(3, ZZ) [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
- modelparameters.sympy.matrices.densetools.isHermitian(matlist, K)[source]¶
Checks whether matrix is hermitian
Examples
>>> from .densetools import isHermitian >>> from .. import QQ >>> a = [ ... [QQ(2,1), QQ(-1,1), QQ(-1,1)], ... [QQ(0,1), QQ(4,1), QQ(-1,1)], ... [QQ(0,1), QQ(0,1), QQ(3,1)]] >>> isHermitian(a, QQ) False
- modelparameters.sympy.matrices.densetools.row(matlist, i)[source]¶
Returns the ith row of a matrix
Examples
>>> from .densetools import row >>> from .. import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> row(a, 2) [6, 2, 3]
- modelparameters.sympy.matrices.densetools.rowadd(matlist, index1, index2, k, K)[source]¶
Adds the index1 row with index2 row which in turn is multiplied by k
- modelparameters.sympy.matrices.densetools.rowmul(matlist, index, k, K)[source]¶
Multiplies index row with k
- modelparameters.sympy.matrices.densetools.rowswap(matlist, index1, index2, K)[source]¶
Returns the matrix with index1 row and index2 row swapped
- modelparameters.sympy.matrices.densetools.trace(matlist, K)[source]¶
Returns the trace of a matrix.
Examples
>>> from .densetools import trace, eye >>> from .. import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> b = eye(4, ZZ) >>> trace(a, ZZ) 10 >>> trace(b, ZZ) 4
- modelparameters.sympy.matrices.densetools.transpose(matlist, K)[source]¶
Returns the transpose of a matrix
Examples
>>> from .densetools import transpose >>> from .. import ZZ >>> a = [ ... [ZZ(3), ZZ(7), ZZ(4)], ... [ZZ(2), ZZ(4), ZZ(5)], ... [ZZ(6), ZZ(2), ZZ(3)]] >>> transpose(a, ZZ) [[3, 2, 6], [7, 4, 2], [4, 5, 3]]
modelparameters.sympy.matrices.immutable module¶
- class modelparameters.sympy.matrices.immutable.ImmutableDenseMatrix(*args, **kwargs)[source]¶
Bases:
DenseMatrix,MatrixExprCreate an immutable version of a matrix.
Examples
>>> from .. import eye >>> from ..matrices import ImmutableMatrix >>> ImmutableMatrix(eye(3)) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> _[0, 0] = 42 Traceback (most recent call last): ... TypeError: Cannot set values of ImmutableDenseMatrix
- property cols¶
- default_assumptions = {'algebraic': False, 'commutative': False, 'complex': False, 'composite': False, 'even': False, 'imaginary': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'transcendental': False, 'zero': False}¶
- is_algebraic = False¶
- is_commutative = False¶
- is_complex = False¶
- is_composite = False¶
- is_even = False¶
- is_imaginary = False¶
- is_integer = False¶
- is_irrational = False¶
- is_negative = False¶
- is_noninteger = False¶
- is_nonnegative = False¶
- is_nonpositive = False¶
- is_nonzero = False¶
- is_odd = False¶
- is_positive = False¶
- is_prime = False¶
- is_rational = False¶
- is_real = False¶
- is_transcendental = False¶
- property is_zero¶
Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None
Examples
>>> from .. import Matrix, zeros >>> from ..abc import x >>> a = Matrix([[0, 0], [0, 0]]) >>> b = zeros(3, 4) >>> c = Matrix([[0, 1], [0, 0]]) >>> d = Matrix([]) >>> e = Matrix([[x, 0], [0, 0]]) >>> a.is_zero True >>> b.is_zero True >>> c.is_zero False >>> d.is_zero True >>> e.is_zero
- property rows¶
- property shape¶
The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
>>> from ..matrices import zeros >>> M = zeros(2, 3) >>> M.shape (2, 3) >>> M.rows 2 >>> M.cols 3
- modelparameters.sympy.matrices.immutable.ImmutableMatrix¶
alias of
ImmutableDenseMatrix
- class modelparameters.sympy.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)[source]¶
Bases:
SparseMatrix,BasicCreate an immutable version of a sparse matrix.
Examples
>>> from .. import eye >>> from .immutable import ImmutableSparseMatrix >>> ImmutableSparseMatrix(1, 1, {}) Matrix([[0]]) >>> ImmutableSparseMatrix(eye(3)) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> _[0, 0] = 42 Traceback (most recent call last): ... TypeError: Cannot set values of ImmutableSparseMatrix >>> _.shape (3, 3)
- default_assumptions = {}¶
- is_Matrix = True¶
modelparameters.sympy.matrices.matrices module¶
- class modelparameters.sympy.matrices.matrices.DeferredVector(name, **assumptions)[source]¶
Bases:
Symbol,NotIterableA vector whose components are deferred (e.g. for use with lambdify)
Examples
>>> from .. import DeferredVector, lambdify >>> X = DeferredVector( 'X' ) >>> X X >>> expr = (X[0] + 2, X[2] + 3) >>> func = lambdify( X, expr) >>> func( [1, 2, 3] ) (3, 6)
- default_assumptions = {}¶
- name¶
- class modelparameters.sympy.matrices.matrices.MatrixBase[source]¶
Bases:
MatrixDeprecated,MatrixCalculus,MatrixEigen,MatrixCommonBase class for matrix objects.
- property D¶
Return Dirac conjugate (if self.rows == 4).
Examples
>>> from .. import Matrix, I, eye >>> m = Matrix((0, 1 + I, 2, 3)) >>> m.D Matrix([[0, 1 - I, -2, -3]]) >>> m = (eye(4) + I*eye(4)) >>> m[0, 3] = 2 >>> m.D Matrix([ [1 - I, 0, 0, 0], [ 0, 1 - I, 0, 0], [ 0, 0, -1 + I, 0], [ 2, 0, 0, -1 + I]])
If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows.
>>> Matrix(eye(2)).D Traceback (most recent call last): ... AttributeError: Matrix has no attribute D.
See also
conjugateBy-element conjugation
HHermite conjugation
- LDLdecomposition()[source]¶
Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.T == A This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a square, symmetric, positive-definite and non-singular matrix.
Examples
>>> from ..matrices import Matrix, eye >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T * A.inv() == eye(A.rows) True
See also
- LDLsolve(rhs)[source]¶
Solves Ax = B using LDL decomposition, for a general square and non-singular matrix.
For a non-square matrix with rows > cols, the least squares solution is returned.
Examples
>>> from ..matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.LDLsolve(B) == B/2 True
- LUdecomposition(iszerofunc=<function _iszero>, simpfunc=None, rankcheck=False)[source]¶
Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then A = (L*U).permuteBkwd(perm), and the row permutation matrix P such that P*A = L*U can be computed by P=eye(A.row).permuteFwd(perm).
See documentation for LUCombined for details about the keyword argument rankcheck, iszerofunc, and simpfunc.
Examples
>>> from .. import Matrix >>> a = Matrix([[4, 3], [6, 3]]) >>> L, U, _ = a.LUdecomposition() >>> L Matrix([ [ 1, 0], [3/2, 1]]) >>> U Matrix([ [4, 3], [0, -3/2]])
- LUdecompositionFF()[source]¶
Compute a fraction-free LU decomposition.
Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I.
- Reference
W. Zhou & D.J. Jeffrey, “Fraction-free matrix factors: new forms for LU and QR factors”. Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008.
See also
- LUdecomposition_Simple(iszerofunc=<function _iszero>, simpfunc=None, rankcheck=False)[source]¶
Compute an lu decomposition of m x n matrix A, where P*A = L*U
L is m x m lower triangular with unit diagonal
U is m x n upper triangular
P is an m x m permutation matrix
Returns an m x n matrix lu, and an m element list perm where each element of perm is a pair of row exchange indices.
The factors L and U are stored in lu as follows: The subdiagonal elements of L are stored in the subdiagonal elements of lu, that is lu[i, j] = L[i, j] whenever i > j. The elements on the diagonal of L are all 1, and are not explicitly stored. U is stored in the upper triangular portion of lu, that is lu[i ,j] = U[i, j] whenever i <= j. The output matrix can be visualized as:
- Matrix([
[u, u, u, u], [l, u, u, u], [l, l, u, u], [l, l, l, u]])
where l represents a subdiagonal entry of the L factor, and u represents an entry from the upper triangular entry of the U factor.
perm is a list row swap index pairs such that if A is the original matrix, then A = (L*U).permuteBkwd(perm), and the row permutation matrix P such that P*A = L*U can be computed by soP=eye(A.row).permuteFwd(perm).
The keyword argument rankcheck determines if this function raises a ValueError when passed a matrix whose rank is strictly less than min(num rows, num cols). The default behavior is to decompose a rank deficient matrix. Pass rankcheck=True to raise a ValueError instead. (This mimics the previous behavior of this function).
The keyword arguments iszerofunc and simpfunc are used by the pivot search algorithm. iszerofunc is a callable that returns a boolean indicating if its input is zero, or None if it cannot make the determination. simpfunc is a callable that simplifies its input. The default is simpfunc=None, which indicate that the pivot search algorithm should not attempt to simplify any candidate pivots. If simpfunc fails to simplify its input, then it must return its input instead of a copy.
When a matrix contains symbolic entries, the pivot search algorithm differs from the case where every entry can be categorized as zero or nonzero. The algorithm searches column by column through the submatrix whose top left entry coincides with the pivot position. If it exists, the pivot is the first entry in the current search column that iszerofunc guarantees is nonzero. If no such candidate exists, then each candidate pivot is simplified if simpfunc is not None. The search is repeated, with the difference that a candidate may be the pivot if iszerofunc() cannot guarantee that it is nonzero. In the second search the pivot is the first candidate that iszerofunc can guarantee is nonzero. If no such candidate exists, then the pivot is the first candidate for which iszerofunc returns None. If no such candidate exists, then the search is repeated in the next column to the right. The pivot search algorithm differs from the one in rref(), which relies on _find_reasonable_pivot(). Future versions of LUdecomposition_simple() may use _find_reasonable_pivot().
See also
- LUsolve(rhs, iszerofunc=<function _iszero>)[source]¶
Solve the linear system Ax = rhs for x where A = self.
This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve.
- QRdecomposition()[source]¶
Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular.
Examples
This is the example from wikipedia:
>>> from .. import Matrix >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175, -58/175], [ 3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) >>> R Matrix([ [14, 21, -14], [ 0, 175, -70], [ 0, 0, 35]]) >>> A == Q*R True
QR factorization of an identity matrix:
>>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> R Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]])
See also
- QRsolve(b)[source]¶
Solve the linear system ‘Ax = b’.
‘self’ is the matrix ‘A’, the method argument is the vector ‘b’. The method returns the solution vector ‘x’. If ‘b’ is a matrix, the system is solved for each column of ‘b’ and the return value is a matrix of the same shape as ‘b’.
This method is slower (approximately by a factor of 2) but more stable for floating-point arithmetic than the LUsolve method. However, LUsolve usually uses an exact arithmetic, so you don’t need to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real (or complex) matrices use mpmath.qr_solve.
- cholesky()[source]¶
Returns the Cholesky decomposition L of a matrix A such that L * L.T = A
A must be a square, symmetric, positive-definite and non-singular matrix.
Examples
>>> from ..matrices import Matrix >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]])
See also
- cholesky_solve(rhs)[source]¶
Solves Ax = B using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned.
- condition_number()[source]¶
Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value
Examples
>>> from .. import Matrix, S >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) >>> A.condition_number() 100
See also
singular_values
- copy()[source]¶
Returns the copy of a matrix.
Examples
>>> from .. import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.copy() Matrix([ [1, 2], [3, 4]])
- cross(b)[source]¶
Return the cross product of self and b relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as self will be returned. If b has the same shape as self then common identities for the cross product (like a x b = - b x a) will hold.
- diagonal_solve(rhs)[source]¶
Solves Ax = B efficiently, where A is a diagonal Matrix, with non-zero diagonal entries.
Examples
>>> from ..matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.diagonal_solve(B) == B/2 True
- dot(b)[source]¶
Return the dot product of Matrix self and b relaxing the condition of compatible dimensions: if either the number of rows or columns are the same as the length of b then the dot product is returned. If self is a row or column vector, a scalar is returned. Otherwise, a list of results is returned (and in that case the number of columns in self must match the length of b).
Examples
>>> from .. import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> v = [1, 1, 1] >>> M.row(0).dot(v) 6 >>> M.col(0).dot(v) 12 >>> M.dot(v) [6, 15, 24]
- dual()[source]¶
Returns the dual of a matrix, which is:
(1/2)*levicivita(i, j, k, l)*M(k, l) summed over indices k and l
Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the ‘matrix’ M is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor.
- gauss_jordan_solve(b, freevar=False)[source]¶
Solves Ax = b using Gauss Jordan elimination.
There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, it will be returned parametrically. If no solutions exist, It will throw ValueError.
- Parameters:
b (Matrix) – The right hand side of the equation to be solved for. Must have the same number of rows as matrix A.
freevar (List) – If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of an arbitrary values of free variables. Then the index of the free variables in the solutions (column Matrix) will be returned by freevar, if the flag freevar is set to True.
- Returns:
x (Matrix) – The matrix that will satisfy Ax = B. Will have as many rows as matrix A has columns, and as many columns as matrix B.
params (Matrix) – If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of an arbitrary parameters. These arbitrary parameters are returned as params Matrix.
Examples
>>> from .. import Matrix >>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]]) >>> b = Matrix([7, 12, 4]) >>> sol, params = A.gauss_jordan_solve(b) >>> sol Matrix([ [-2*_tau0 - 3*_tau1 + 2], [ _tau0], [ 2*_tau1 + 5], [ _tau1]]) >>> params Matrix([ [_tau0], [_tau1]])
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b = Matrix([3, 6, 9]) >>> sol, params = A.gauss_jordan_solve(b) >>> sol Matrix([ [-1], [ 2], [ 0]]) >>> params Matrix(0, 1, [])
See also
lower_triangular_solve,upper_triangular_solve,cholesky_solve,diagonal_solve,LDLsolve,LUsolve,QRsolve,pinvReferences
- inv(method=None, **kwargs)[source]¶
Return the inverse of a matrix.
CASE 1: If the matrix is a dense matrix.
Return the matrix inverse using the method indicated (default is Gauss elimination).
- Parameters:
method (('GE', 'LU', or 'ADJ')) –
Notes
According to the
methodkeyword, it calls the appropriate method:GE …. inverse_GE(); default LU …. inverse_LU() ADJ … inverse_ADJ()
See also
- Raises:
ValueError – If the determinant of the matrix is zero.
CASE 2 – If the matrix is a sparse matrix.:
Return the matrix inverse using Cholesky or LDL (default). –
kwargs –
====== –
:raises method : (‘CH’, ‘LDL’):
Notes
According to the
methodkeyword, it calls the appropriate method:LDL … inverse_LDL(); default CH …. inverse_CH()
- Raises:
ValueError – If the determinant of the matrix is zero.
- inv_mod(m)[source]¶
Returns the inverse of the matrix K (mod m), if it exists.
Method to find the matrix inverse of K (mod m) implemented in this function:
Compute mathrm{adj}(K) = mathrm{cof}(K)^t, the adjoint matrix of K.
Compute r = 1/mathrm{det}(K) pmod m.
K^{-1} = rcdot mathrm{adj}(K) pmod m.
Examples
>>> from .. import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.inv_mod(5) Matrix([ [3, 1], [4, 2]]) >>> A.inv_mod(3) Matrix([ [1, 1], [0, 1]])
- inverse_ADJ(iszerofunc=<function _iszero>)[source]¶
Calculates the inverse using the adjugate matrix and a determinant.
See also
- inverse_GE(iszerofunc=<function _iszero>)[source]¶
Calculates the inverse using Gaussian elimination.
See also
- inverse_LU(iszerofunc=<function _iszero>)[source]¶
Calculates the inverse using LU decomposition.
See also
- is_Matrix = True¶
- is_nilpotent()[source]¶
Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer k, B**k is a zero matrix.
Examples
>>> from .. import Matrix >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() True
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() False
- key2bounds(keys)[source]¶
Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of self’s range.
See also
- key2ij(key)[source]¶
Converts key into canonical form, converting integers or indexable items into valid integers for self’s range or returning slices unchanged.
See also
- norm(ord=None)[source]¶
Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter
ord
norm for matrices
norm for vectors
None
Frobenius norm
2-norm
‘fro’
Frobenius norm
does not exist
inf
–
max(abs(x))
-inf
–
min(abs(x))
1
–
as below
-1
–
as below
2
2-norm (largest sing. value)
as below
-2
smallest singular value
as below
other
does not exist
sum(abs(x)**ord)**(1./ord)
Examples
>>> from .. import Matrix, Symbol, trigsimp, cos, sin, oo >>> x = Symbol('x', real=True) >>> v = Matrix([cos(x), sin(x)]) >>> trigsimp( v.norm() ) 1 >>> v.norm(10) (sin(x)**10 + cos(x)**10)**(1/10) >>> A = Matrix([[1, 1], [1, 1]]) >>> A.norm(2)# Spectral norm (max of |Ax|/|x| under 2-vector-norm) 2 >>> A.norm(-2) # Inverse spectral norm (smallest singular value) 0 >>> A.norm() # Frobenius Norm 2 >>> Matrix([1, -2]).norm(oo) 2 >>> Matrix([-1, 2]).norm(-oo) 1
See also
- pinv()[source]¶
Calculate the Moore-Penrose pseudoinverse of the matrix.
The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the inverse.
Examples
>>> from .. import Matrix >>> Matrix([[1, 2, 3], [4, 5, 6]]).pinv() Matrix([ [-17/18, 4/9], [ -1/9, 1/9], [ 13/18, -2/9]])
See also
References
[1]
- pinv_solve(B, arbitrary_matrix=None)[source]¶
Solve Ax = B using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will be returned based on the value of arbitrary_matrix. If no solutions exist, the least-squares solution is returned.
- Parameters:
B (Matrix) – The right hand side of the equation to be solved for. Must have the same number of rows as matrix A.
arbitrary_matrix (Matrix) – If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of an arbitrary matrix. This parameter may be set to a specific matrix to use for that purpose; if so, it must be the same shape as x, with as many rows as matrix A has columns, and as many columns as matrix B. If left as None, an appropriate matrix containing dummy symbols in the form of
wn_mwill be used, with n and m being row and column position of each symbol.
- Returns:
x – The matrix that will satisfy Ax = B. Will have as many rows as matrix A has columns, and as many columns as matrix B.
- Return type:
Matrix
Examples
>>> from .. import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> B = Matrix([7, 8]) >>> A.pinv_solve(B) Matrix([ [ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18], [-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9], [ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]]) >>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0])) Matrix([ [-55/18], [ 1/9], [ 59/18]])
See also
lower_triangular_solve,upper_triangular_solve,gauss_jordan_solve,cholesky_solve,diagonal_solve,LDLsolve,LUsolve,QRsolve,pinvNotes
This may return either exact solutions or least squares solutions. To determine which, check
A * A.pinv() * B == B. It will be True if exact solutions exist, and False if only a least-squares solution exists. Be aware that the left hand side of that equation may need to be simplified to correctly compare to the right hand side.References
[1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system
- print_nonzero(symb='X')[source]¶
Shows location of non-zero entries for fast shape lookup.
Examples
>>> from ..matrices import Matrix, eye >>> m = Matrix(2, 3, lambda i, j: i*3+j) >>> m Matrix([ [0, 1, 2], [3, 4, 5]]) >>> m.print_nonzero() [ XX] [XXX] >>> m = eye(4) >>> m.print_nonzero("x") [x ] [ x ] [ x ] [ x]
- project(v)[source]¶
Return the projection of
selfonto the line containingv.Examples
>>> from .. import Matrix, S, sqrt >>> V = Matrix([sqrt(3)/2, S.Half]) >>> x = Matrix([[1, 0]]) >>> V.project(x) Matrix([[sqrt(3)/2, 0]]) >>> V.project(-x) Matrix([[sqrt(3)/2, 0]])
- solve(rhs, method='GE')[source]¶
Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
- solve_least_squares(rhs, method='CH')[source]¶
Return the least-square fit to the data.
By default the cholesky_solve routine is used (method=’CH’); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method.
Examples
>>> from ..matrices import Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = Matrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]])
If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]])
But let’s add 1 to the middle value and then solve for the least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]])
The error is given by S*xy - r:
>>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5
- table(printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right')[source]¶
String form of Matrix as a table.
printeris the printer to use for on the elements (generally something like StrPrinter())rowstartis the string used to start each row (by default ‘[‘).rowendis the string used to end each row (by default ‘]’).rowsepis the string used to separate rows (by default a newline).colsepis the string used to separate columns (by default ‘, ‘).aligndefines how the elements are aligned. Must be one of ‘left’, ‘right’, or ‘center’. You can also use ‘<’, ‘>’, and ‘^’ to mean the same thing, respectively.This is used by the string printer for Matrix.
Examples
>>> from .. import Matrix >>> from ..printing.str import StrPrinter >>> M = Matrix([[1, 2], [-33, 4]]) >>> printer = StrPrinter() >>> M.table(printer) '[ 1, 2]\n[-33, 4]' >>> print(M.table(printer)) [ 1, 2] [-33, 4] >>> print(M.table(printer, rowsep=',\n')) [ 1, 2], [-33, 4] >>> print('[%s]' % M.table(printer, rowsep=',\n')) [[ 1, 2], [-33, 4]] >>> print(M.table(printer, colsep=' ')) [ 1 2] [-33 4] >>> print(M.table(printer, align='center')) [ 1 , 2] [-33, 4] >>> print(M.table(printer, rowstart='{', rowend='}')) { 1, 2} {-33, 4}
- vech(diagonal=True, check_symmetry=True)[source]¶
Return the unique elements of a symmetric Matrix as a one column matrix by stacking the elements in the lower triangle.
Arguments: diagonal – include the diagonal cells of self or not check_symmetry – checks symmetry of self but not completely reliably
Examples
>>> from .. import Matrix >>> m=Matrix([[1, 2], [2, 3]]) >>> m Matrix([ [1, 2], [2, 3]]) >>> m.vech() Matrix([ [1], [2], [3]]) >>> m.vech(diagonal=False) Matrix([[2]])
See also
vec
- class modelparameters.sympy.matrices.matrices.MatrixCalculus[source]¶
Bases:
MatrixCommonProvides calculus-related matrix operations.
- diff(*args)[source]¶
Calculate the derivative of each element in the matrix.
argswill be passed to theintegratefunction.Examples
>>> from ..matrices import Matrix >>> from ..abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.diff(x) Matrix([ [1, 0], [0, 0]])
- integrate(*args)[source]¶
Integrate each element of the matrix.
argswill be passed to theintegratefunction.Examples
>>> from ..matrices import Matrix >>> from ..abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.integrate((x, )) Matrix([ [x**2/2, x*y], [ x, 0]]) >>> M.integrate((x, 0, 2)) Matrix([ [2, 2*y], [2, 0]])
- jacobian(X)[source]¶
Calculates the Jacobian matrix (derivative of a vector-valued function).
- Parameters:
self (vector of expressions representing functions f_i(x_1, ..., x_n).) –
X (set of x_i's in order, it can be a list or a Matrix) –
order (Both self and X can be a row or a column matrix in any) –
(i.e. –
work). (jacobian() should always) –
Examples
>>> from .. import sin, cos, Matrix >>> from ..abc import rho, phi >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) >>> Y = Matrix([rho, phi]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0]]) >>> X = Matrix([rho*cos(phi), rho*sin(phi)]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]])
See also
hessian,wronskian
- class modelparameters.sympy.matrices.matrices.MatrixDeprecated[source]¶
Bases:
MatrixCommonA class to house deprecated matrix methods.
- berkowitz_eigenvals(**flags)[source]¶
Computes eigenvalues of a Matrix using Berkowitz method.
See also
- det_LU_decomposition()[source]¶
Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail.
TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See also
det,det_bareiss,berkowitz_det
- det_bareiss()[source]¶
Compute matrix determinant using Bareiss’ fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae.
TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See also
det,berkowitz_det
- class modelparameters.sympy.matrices.matrices.MatrixDeterminant[source]¶
Bases:
MatrixCommonProvides basic matrix determinant operations. Should not be instantiated directly.
- adjugate(method='berkowitz')[source]¶
Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors.
http://en.wikipedia.org/wiki/Adjugate
See also
cofactor_matrix,transpose
- charpoly(x=_lambda, simplify=<function simplify>)[source]¶
Computes characteristic polynomial det(x*I - self) where I is the identity matrix.
A PurePoly is returned, so using different variables for
xdoes not affect the comparison or the polynomials:Examples
>>> from .. import Matrix >>> from ..abc import x, y >>> A = Matrix([[1, 3], [2, 0]]) >>> A.charpoly(x) == A.charpoly(y) True
Specifying
xis optional; a Dummy with namelambdais used by default (which looks good when pretty-printed in unicode):>>> A.charpoly().as_expr() _lambda**2 - _lambda - 6
No test is done to see that
xdoesn’t clash with an existing symbol, so using the default (lambda) or your own Dummy symbol is the safest option:>>> A = Matrix([[1, 2], [x, 0]]) >>> A.charpoly().as_expr() _lambda**2 - _lambda - 2*x >>> A.charpoly(x).as_expr() x**2 - 3*x
Notes
The Samuelson-Berkowitz algorithm is used to compute the characteristic polynomial efficiently and without any division operations. Thus the characteristic polynomial over any commutative ring without zero divisors can be computed.
See also
- cofactor_matrix(method='berkowitz')[source]¶
Return a matrix containing the cofactor of each element.
See also
- det(method='bareiss')[source]¶
Computes the determinant of a matrix. If the matrix is at most 3x3, a hard-coded formula is used. Otherwise, the determinant using the method method.
- Possible values for “method”:
bareis berkowitz lu
- class modelparameters.sympy.matrices.matrices.MatrixEigen[source]¶
Bases:
MatrixSubspacesProvides basic matrix eigenvalue/vector operations. Should not be instantiated directly.
- diagonalize(reals_only=False, sort=False, normalize=False)[source]¶
Return (P, D), where D is diagonal and
D = P^-1 * M * P
where M is current matrix.
- Parameters:
reals_only (bool. Whether to throw an error if complex numbers are need) – to diagonalize. (Default: False)
sort (bool. Sort the eigenvalues along the diagonal. (Default: False)) –
normalize (bool. If True, normalize the columns of P. (Default: False)) –
Examples
>>> from .. import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> (P, D) = m.diagonalize() >>> D Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> P Matrix([ [-1, 0, -1], [ 0, 0, -1], [ 2, 1, 2]]) >>> P.inv() * m * P Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]])
See also
is_diagonal,is_diagonalizable
- eigenvals(error_when_incomplete=True, **flags)[source]¶
Return eigenvalues using the Berkowitz agorithm to compute the characteristic polynomial.
- Parameters:
error_when_incomplete (bool) – Raise an error when not all eigenvalues are computed. This is caused by
rootsnot returning a full list of eigenvalues.Floats (Since the roots routine doesn't always work well with) –
:param : :param they will be replaced with Rationals before calling that: :param routine. If this is not desired: :param set flag
rationalto False.:
- eigenvects(error_when_incomplete=True, **flags)[source]¶
Return list of triples (eigenval, multiplicity, basis).
- The flag
simplifyhas two effects: 1) if bool(simplify) is True, as_content_primitive() will be used to tidy up normalization artifacts; 2) if nullspace needs simplification to compute the basis, the simplify flag will be passed on to the nullspace routine which will interpret it there.
- Parameters:
error_when_incomplete (bool) – Raise an error when not all eigenvalues are computed. This is caused by
rootsnot returning a full list of eigenvalues.Floats (If the matrix contains any) –
Rationals (they will be changed to) –
purposes (for computation) –
being (but the answers will be returned after) –
imaginary (evaluated with evalf. If it is desired to removed small) –
step (portions during the evalf) –
flag. (pass a value for the chop) –
- The flag
- is_diagonalizable(reals_only=False, **kwargs)[source]¶
Returns true if a matrix is diagonalizable.
- Parameters:
reals_only (bool. If reals_only=True, determine whether the matrix can be) – diagonalized without complex numbers. (Default: False)
kwargs –
====== –
clear_cache (bool. If True, clear the result of any computations when finished.) – (Default: True)
Examples
>>> from .. import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> m.is_diagonalizable() True >>> m = Matrix(2, 2, [0, 1, 0, 0]) >>> m Matrix([ [0, 1], [0, 0]]) >>> m.is_diagonalizable() False >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_diagonalizable() True >>> m.is_diagonalizable(reals_only=True) False
See also
is_diagonal,diagonalize
- jordan_form(calc_transform=True, **kwargs)[source]¶
Return (P, J) where J is a Jordan block matrix and P is a matrix such that
self == P*J*P**-1
- Parameters:
Examples
>>> from .. import Matrix >>> m = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]]) >>> P, J = m.jordan_form() >>> J Matrix([ [2, 1, 0, 0], [0, 2, 0, 0], [0, 0, 2, 1], [0, 0, 0, 2]])
See also
jordan_block
- left_eigenvects(**flags)[source]¶
Returns left eigenvectors and eigenvalues.
This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for eigenvects(), i.e. the
**flagsarguments gets passed directly to eigenvects().Examples
>>> from .. import Matrix >>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) >>> M.eigenvects() [(-1, 1, [Matrix([ [-1], [ 1], [ 0]])]), (0, 1, [Matrix([ [ 0], [-1], [ 1]])]), (2, 1, [Matrix([ [2/3], [1/3], [ 1]])])] >>> M.left_eigenvects() [(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])])]
- class modelparameters.sympy.matrices.matrices.MatrixReductions[source]¶
Bases:
MatrixDeterminantProvides basic matrix row/column operations. Should not be instantiated directly.
- echelon_form(iszerofunc=<function _iszero>, simplify=False, with_pivots=False)[source]¶
Returns a matrix row-equivalent to self that is in echelon form. Note that echelon form of a matrix is not unique, however, properties like the row space and the null space are preserved.
- elementary_col_op(op='n->kn', col=None, k=None, col1=None, col2=None)[source]¶
Perfoms the elementary column operation op.
op may be one of
“n->kn” (column n goes to k*n)
“n<->m” (swap column n and column m)
“n->n+km” (column n goes to column n + k*column m)
- Parameters:
op (string; the elementary row operation) –
col (the column to apply the column operation) –
k (the multiple to apply in the column operation) –
col1 (one column of a column swap) –
col2 (second column of a column swap or column "m" in the column operation) – “n->n+km”
- elementary_row_op(op='n->kn', row=None, k=None, row1=None, row2=None)[source]¶
Perfoms the elementary row operation op.
op may be one of
“n->kn” (row n goes to k*n)
“n<->m” (swap row n and row m)
“n->n+km” (row n goes to row n + k*row m)
- Parameters:
op (string; the elementary row operation) –
row (the row to apply the row operation) –
k (the multiple to apply in the row operation) –
row1 (one row of a row swap) –
row2 (second row of a row swap or row "m" in the row operation) – “n->n+km”
- property is_echelon¶
Returns True if he matrix is in echelon form. That is, all rows of zeros are at the bottom, and below each leading non-zero in a row are exclusively zeros.
- rank(iszerofunc=<function _iszero>, simplify=False)[source]¶
Returns the rank of a matrix
>>> from .. import Matrix >>> from ..abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rank() 2 >>> n = Matrix(3, 3, range(1, 10)) >>> n.rank() 2
- rref(iszerofunc=<function _iszero>, simplify=False, pivots=True, normalize_last=True)[source]¶
Return reduced row-echelon form of matrix and indices of pivot vars.
- Parameters:
iszerofunc (Function) – A function used for detecting whether an element can act as a pivot. lambda x: x.is_zero is used by default.
simplify (Function) – A function used to simplify elements when looking for a pivot. By default SymPy’s `simplify`is used.
pivots (True or False) – If True, a tuple containing the row-reduced matrix and a tuple of pivot columns is returned. If False just the row-reduced matrix is returned.
normalize_last (True or False) – If True, no pivots are normalized to 1 until after all entries above and below each pivot are zeroed. This means the row reduction algorithm is fraction free until the very last step. If False, the naive row reduction procedure is used where each pivot is normalized to be 1 before row operations are used to zero above and below the pivot.
Notes
The default value of normalize_last=True can provide significant speedup to row reduction, especially on matrices with symbols. However, if you depend on the form row reduction algorithm leaves entries of the matrix, set noramlize_last=False
Examples
>>> from .. import Matrix >>> from ..abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rref() (Matrix([ [1, 0], [0, 1]]), (0, 1)) >>> rref_matrix, rref_pivots = m.rref() >>> rref_matrix Matrix([ [1, 0], [0, 1]]) >>> rref_pivots (0, 1)
- class modelparameters.sympy.matrices.matrices.MatrixSubspaces[source]¶
Bases:
MatrixReductionsProvides methods relating to the fundamental subspaces of a matrix. Should not be instantiated directly.
- columnspace(simplify=False)[source]¶
Returns a list of vectors (Matrix objects) that span columnspace of self
Examples
>>> from ..matrices import Matrix >>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> m Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> m.columnspace() [Matrix([ [ 1], [-2], [ 3]]), Matrix([ [0], [0], [6]])]
- nullspace(simplify=False)[source]¶
Returns list of vectors (Matrix objects) that span nullspace of self
Examples
>>> from ..matrices import Matrix >>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> m Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> m.nullspace() [Matrix([ [-3], [ 1], [ 0]])]
See also
- modelparameters.sympy.matrices.matrices.a2idx(j, n=None)[source]¶
Return integer after making positive and validating against n.
- modelparameters.sympy.matrices.matrices.classof(A, B)[source]¶
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
>>> from .. import Matrix, ImmutableMatrix >>> from .matrices import classof >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix >>> IM = ImmutableMatrix([[1, 2], [3, 4]]) >>> classof(M, IM) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
modelparameters.sympy.matrices.normalforms module¶
- modelparameters.sympy.matrices.normalforms.invariant_factors(m, domain=None)[source]¶
Return the tuple of abelian invariants for a matrix m (as in the Smith-Normal form)
References
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm [2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
- modelparameters.sympy.matrices.normalforms.smith_normal_form(m, domain=None)[source]¶
Return the Smith Normal Form of a matrix m over the ring domain. This will only work if the ring is a principal ideal domain.
Examples
>>> from ..polys.solvers import RawMatrix as Matrix >>> from ..polys.domains import ZZ >>> from .normalforms import smith_normal_form >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]]) >>> setattr(m, "ring", ZZ) >>> print(smith_normal_form(m)) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
modelparameters.sympy.matrices.sparse module¶
- class modelparameters.sympy.matrices.sparse.MutableSparseMatrix(*args, **kwargs)[source]¶
Bases:
SparseMatrix,MatrixBase- as_mutable()[source]¶
Returns a mutable version of this matrix.
Examples
>>> from .. import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]])
- col_del(k)[source]¶
Delete the given column of the matrix.
Examples
>>> from ..matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.col_del(0) >>> M Matrix([ [0], [1]])
See also
- col_join(other)[source]¶
Returns B augmented beneath A (row-wise joining):
[A] [B]
Examples
>>> from .. import SparseMatrix, Matrix, ones >>> A = SparseMatrix(ones(3)) >>> A Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) >>> B = SparseMatrix.eye(3) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.col_join(B); C Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C == A.col_join(Matrix(B)) True
Joining along columns is the same as appending rows at the end of the matrix:
>>> C == A.row_insert(A.rows, Matrix(B)) True
- col_op(j, f)[source]¶
In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i) for i in range(self.rows).
Examples
>>> from ..matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[1, 0] = -1 >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [ 2, 4, 0], [-1, 0, 0], [ 0, 0, 2]])
- col_swap(i, j)[source]¶
Swap, in place, columns i and j.
Examples
>>> from ..matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.col_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [2, 0, 1]])
- fill(value)[source]¶
Fill self with the given value.
Notes
Unless many values are going to be deleted (i.e. set to zero) this will create a matrix that is slower than a dense matrix in operations.
Examples
>>> from ..matrices import SparseMatrix >>> M = SparseMatrix.zeros(3); M Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> M.fill(1); M Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]])
- row_del(k)[source]¶
Delete the given row of the matrix.
Examples
>>> from ..matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.row_del(0) >>> M Matrix([[0, 1]])
See also
- row_join(other)[source]¶
Returns B appended after A (column-wise augmenting):
[A B]
Examples
>>> from .. import SparseMatrix, Matrix >>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0))) >>> A Matrix([ [1, 0, 1], [0, 1, 0], [1, 1, 0]]) >>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.row_join(B); C Matrix([ [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1]]) >>> C == A.row_join(Matrix(B)) True
Joining at row ends is the same as appending columns at the end of the matrix:
>>> C == A.col_insert(A.cols, B) True
- row_op(i, f)[source]¶
In-place operation on row
iusing two-arg functor whose args are interpreted as(self[i, j], j).Examples
>>> from ..matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]])
See also
row,zip_row_op,col_op
- row_swap(i, j)[source]¶
Swap, in place, columns i and j.
Examples
>>> from ..matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.row_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [0, 2, 1]])
- zip_row_op(i, k, f)[source]¶
In-place operation on row
iusing two-arg functor whose args are interpreted as(self[i, j], self[k, j]).Examples
>>> from ..matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]])
- class modelparameters.sympy.matrices.sparse.SparseMatrix(*args, **kwargs)[source]¶
Bases:
MatrixBaseA sparse matrix (a matrix with a large number of zero elements).
Examples
>>> from ..matrices import SparseMatrix >>> SparseMatrix(2, 2, range(4)) Matrix([ [0, 1], [2, 3]]) >>> SparseMatrix(2, 2, {(1, 1): 2}) Matrix([ [0, 0], [0, 2]])
See also
sympy.matrices.dense.Matrix- property CL¶
Alternate faster representation
- LDLdecomposition()[source]¶
Returns the LDL Decomposition (matrices
LandD) of matrixA, such thatL * D * L.T == A.Amust be a square, symmetric, positive-definite and non-singular.This method eliminates the use of square root and ensures that all the diagonal entries of L are 1.
Examples
>>> from ..matrices import SparseMatrix >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T == A True
- property RL¶
Alternate faster representation
- applyfunc(f)[source]¶
Apply a function to each element of the matrix.
Examples
>>> from ..matrices import SparseMatrix >>> m = SparseMatrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]])
- as_mutable()[source]¶
Returns a mutable version of this matrix.
Examples
>>> from .. import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]])
- cholesky()[source]¶
Returns the Cholesky decomposition L of a matrix A such that L * L.T = A
A must be a square, symmetric, positive-definite and non-singular matrix
Examples
>>> from ..matrices import SparseMatrix >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T == A True
- col_list()[source]¶
Returns a column-sorted list of non-zero elements of the matrix.
Examples
>>> from ..matrices import SparseMatrix >>> a=SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.CL [(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
See also
col_op,row_list
- copy()[source]¶
Returns the copy of a matrix.
Examples
>>> from .. import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.copy() Matrix([ [1, 2], [3, 4]])
- liupc()[source]¶
Liu’s algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization.
Examples
>>> from ..matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.liupc() ([[0], [], [0], [1, 2]], [4, 3, 4, 4])
References
Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
- row_list()[source]¶
Returns a row-sorted list of non-zero elements of the matrix.
Examples
>>> from ..matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.RL [(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
See also
row_op,col_list
- row_structure_symbolic_cholesky()[source]¶
Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization.
Examples
>>> from ..matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.row_structure_symbolic_cholesky() [[0], [], [0], [1, 2]]
References
Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
- solve(rhs, method='LDL')[source]¶
Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
- solve_least_squares(rhs, method='LDL')[source]¶
Return the least-square fit to the data.
By default the cholesky_solve routine is used (method=’CH’); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method.
Examples
>>> from ..matrices import SparseMatrix, Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = SparseMatrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]])
If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]])
But let’s add 1 to the middle value and then solve for the least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]])
The error is given by S*xy - r:
>>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5
modelparameters.sympy.matrices.sparsetools module¶
Module contents¶
A module that handles matrices.
Includes functions for fast creating matrices like zero, one/eye, random matrix, etc.