Source code for ap_features.testing
import numpy as np
[docs]
def ca_transient(t, tstart=0.05):
tau1 = 0.05
tau2 = 0.110
ca_diast = 0.0
ca_ampl = 1.0
beta = (tau1 / tau2) ** (-1 / (tau1 / tau2 - 1)) - (tau1 / tau2) ** (-1 / (1 - tau2 / tau1))
ca = np.zeros_like(t)
ca[t <= tstart] = ca_diast
ca[t > tstart] = (ca_ampl - ca_diast) / beta * (
np.exp(-(t[t > tstart] - tstart) / tau1) - np.exp(-(t[t > tstart] - tstart) / tau2)
) + ca_diast
return ca
[docs]
def fitzhugh_nagumo(t, x, a=-0.3, b=1.4, tau=20.0, Iext=0.23):
"""Time derivative of the Fitzhugh-Nagumo neural model.
Parameters
Parameters
----------
t : float
Time (not used)
x : np.ndarray
State of size 2 - (Membrane potential, Recovery variable)
a : float
Parameter in the model, by default -0.3
b : float
Parameter in the model, by default 1.4
tau : float
Time scale, by default 20.0
Iext : float
Constant stimulus current, by default 0.23
Returns
-------
np.ndarray
dx/dt - size 2
"""
return np.array([x[0] - x[0] ** 3 - x[1] + Iext, (x[0] - a - b * x[1]) / tau])