Monodomain model#

In this demo we solve the Monodomain model

\[\frac{\lambda}{1 + \lambda} \nabla \cdot \left( M_i \nabla v \right) = \chi C_m \frac{\partial v}{\partial t} + \chi I_{ion} \; x \in \Omega\]

on a square domain, \(\Omega = [0, 10] \times [0, 10]\). The monodomain model is a simplified version of the Bidomain model where we assume that the extracellular conductivity is proportional to the intracellular conductivity

\[M_e = \lambda M_i\]

where \(\lambda\) is a constant scalar.

First we need to make the necessary imports

import dolfin
import cbcbeat
import math
import logging
import goss
import tqdm
import gotran
from cbcbeat.gossplittingsolver import GOSSplittingSolver

First we initialize some parameters for the solver

ps = GOSSplittingSolver.default_parameters()
ps["pde_solver"] = "monodomain"
ps["MonodomainSolver"]["linear_solver_type"] = "iterative"
ps["MonodomainSolver"]["theta"] = 0.5
ps["theta"] = 0.5
ps["enable_adjoint"] = False
ps["apply_stimulus_current_to_pde"] = True
ps["ode_solver"]["solver"] = "GRL1"
ps["ode_solver"]["num_threads"] = 0
dolfin.set_log_level(logging.WARNING)

We define the domain, i.e a unit square that we scale by a factor of 10.0

domain = dolfin.UnitSquareMesh(100, 100)
domain.coordinates()[:] *= 10

Next we define the stimulus domain which will be a circle with

class StimSubDomain(dolfin.SubDomain):
    def __init__(self, center, radius):
        self.x0, self.y0 = center
        self.radius = radius
        super().__init__()

    def inside(self, x, on_boundary):
        r = math.sqrt((x[0] - self.x0) ** 2 + (x[1] - self.y0) ** 2)
        if r < self.radius:
            return True
        return False
# Create a mesh function containing markers for the stimulus domain
stim_domain = dolfin.MeshFunction("size_t", domain, domain.topology().dim(), 0)
# Set all markers to zero
stim_domain.set_all(0)
# We mark the stimulus domain with a different marker
stim_marker = 1
domain_size = domain.coordinates().max()
# Create a domain
stim_subdomain = StimSubDomain(
    center=(domain_size / 2.0, 0.0),
    radius=domain_size / 5.0,
)
# And mark the domain
stim_subdomain.mark(stim_domain, stim_marker)

Next we create the stimulus protocol

# Strength of the amplitude (this is based on the ionic model)
stim_amplitude = 50.0
# Duration of the stimulus
stim_duration = 1.0
# Make a constant representing time
time = dolfin.Constant(0.0)
# Make an expression that we apply a stimulus at 1 ms for a duration of 1 ms
stim = dolfin.Expression(
    "time > start ? (time <= (duration + start) ? " "amplitude : 0.0) : 0.0",
    time=time,
    duration=stim_duration,
    start=1.0,
    amplitude=stim_amplitude,
    degree=2,
)
# Make a stimulus object to be passed to cbcbeat
stimulus = cbcbeat.Markerwise([stim], [stim_marker], stim_domain)

We load the ode representing the ionic model

gotran_ode = gotran.load_ode("tentusscher_panfilov_2006_M_cell.ode")
# and create a cell model with the membrane potential as a field state
# This will make the membrane potential being spatial dependent-
cellmodel = goss.dolfinutils.DOLFINParameterizedODE(
    gotran_ode,
    field_states=["V"],
)
# Do not apply any stimulus in the cell model since we will do this through the bidomain model
cellmodel.set_parameter("stim_amplitude", 0)

Next we need to define the conductivity tensors. Here we use the same parameters as in Bidomain model

chi = 12000.0  # cm^{-1}
s_il = 300.0 / chi  # mS
s_it = s_il / 2  # mS
s_el = 200.0 / chi  # mS
s_et = s_el / 1.2  # mS

and make a new conductivity tensor by taking the harmonic mean of the parameters

sl = s_il * s_el / (s_il + s_el)
st = s_it * s_et / (s_it + s_et)
M_i = dolfin.as_tensor(((dolfin.Constant(sl), 0), (0, dolfin.Constant(st))))

Create and the CardiacModel in cbcbeat. Since we use a monodomain model we don’t need to pass the extracellular conductivity

heart = cbcbeat.CardiacModel(
    domain=domain,
    time=time,
    M_i=M_i,
    M_e=None,
    cell_models=cellmodel,
    stimulus=stimulus,
)
# and initialize the solver
solver = GOSSplittingSolver(heart, ps)

We extract the membrane potential from the solution fields

(vs_, vs, vur) = solver.solution_fields()
V = vs.function_space()
v = dolfin.Function(V)

and solve the model for 100 ms with increments of 0.5. We also save the resulting membrane potential in and XDMF file that can be visualized in Paraview.

dt = 0.5
T = 100
vfile = dolfin.XDMFFile(dolfin.MPI.comm_world, "monodomain.xdmf")
for (t0, t1), fields in tqdm.tqdm(solver.solve((0, T), dt), total=int(T / dt)):
    v.assign(vs_)
    vfile.write(v, t0)
../../_images/monodomain.png

Fig. 8 Membrane potential#

Reference#