Cellular model#

ORdmm_Land_em_coupling#

This document is automatically generated using gotran

Model is based on the work from [OHaraViragVarroR11], [LPHS+17]

Parameters#

Name

Value

\(scale_{\mathcal{I}}\)

\(1.02\)

\(scale_{IK1}\)

\(1.41\)

\(scale_{IKr}\)

\(1.12\)

\(scale_{IKs}\)

\(1.65\)

\(scale_{INaL}\)

\(2.27\)

\(celltype\)

\(0\)

\(cao\)

\(1.8\)

\(ko\)

\(5.4\)

\(nao\)

\(1.4\!\times\!10 ^{2}\)

\(F\)

\(9.65\!\times\!10 ^{4}\)

\(R\)

\(8.31\!\times\!10 ^{3}\)

\(T\)

\(3.1\!\times\!10 ^{2}\)

\(L\)

\(1\!\times\!10 ^{-2}\)

\(rad\)

\(110\!\times\!10 ^{-5}\)

\(Ahf\)

\(0.99\)

\(GNa\)

\(3.1\!\times\!10 ^{1}\)

\(thL\)

\(2\!\times\!10 ^{2}\)

\(Gto\)

\(200\!\times\!10 ^{-4}\)

\(\delta_{epi}\)

\(1\)

\(Aff\)

\(0.6\)

\(Kmn\)

\(200\!\times\!10 ^{-5}\)

\(k2n\)

\(1\!\times\!10 ^{3}\)

\(tjca\)

\(7.5\!\times\!10 ^{1}\)

\(zca\)

\(2\)

\(bt\)

\(4.75\)

\(B_{0}\)

\(2.3\)

\(B_{1}\)

\(-2.4\)

\(Tot_{A}\)

\(2.5\!\times\!10 ^{1}\)

\(Tref\)

\(1.2\!\times\!10 ^{2}\)

\(Trpn_{50}\)

\(0.35\)

\(calib\)

\(1\)

\(cat_{50 ref}\)

\(0.81\)

\(dLambda\)

\(0\)

\(emcoupling\)

\(1\)

\(etal\)

\(2\!\times\!10 ^{2}\)

\(etas\)

\(2\!\times\!10 ^{1}\)

\(gammas\)

\(850\!\times\!10 ^{-5}\)

\(gammaw\)

\(0.61\)

\(isacs\)

\(0\)

\(ktrpn\)

\(1\!\times\!10 ^{-1}\)

\(ku\)

\(400\!\times\!10 ^{-4}\)

\(kuw\)

\(0.18\)

\(kws\)

\(120\!\times\!10 ^{-4}\)

\(lmbda\)

\(1\)

\(mode\)

\(1\)

\(ntm\)

\(2.4\)

\(ntrpn\)

\(2\)

\(p_{a}\)

\(2.1\)

\(p_{b}\)

\(9.1\)

\(p_{k}\)

\(7\)

\(\phi\)

\(2.23\)

\(rs\)

\(0.25\)

\(rw\)

\(0.5\)

\(CaMKo\)

\(500\!\times\!10 ^{-4}\)

\(KmCaM\)

\(150\!\times\!10 ^{-5}\)

\(KmCaMK\)

\(0.15\)

\(aCaMK\)

\(500\!\times\!10 ^{-4}\)

\(bCaMK\)

\(680\!\times\!10 ^{-6}\)

\(PKNa\)

\(183\!\times\!10 ^{-4}\)

\(Gncx\)

\(800\!\times\!10 ^{-6}\)

\(KmCaAct\)

\(150\!\times\!10 ^{-6}\)

\(kasymm\)

\(1.25\!\times\!10 ^{1}\)

\(kcaoff\)

\(5\!\times\!10 ^{3}\)

\(kcaon\)

\(1.5\!\times\!10 ^{6}\)

\(kna_{1}\)

\(1.5\!\times\!10 ^{1}\)

\(kna_{2}\)

\(5\)

\(kna_{3}\)

\(8.81\!\times\!10 ^{1}\)

\(qca\)

\(0.17\)

\(qna\)

\(0.52\)

\(wca\)

\(6\!\times\!10 ^{4}\)

\(wna\)

\(6\!\times\!10 ^{4}\)

\(wnaca\)

\(5\!\times\!10 ^{3}\)

\(H\)

\(1\!\times\!10 ^{-7}\)

\(Khp\)

\(170\!\times\!10 ^{-9}\)

\(Kki\)

\(0.5\)

\(Kko\)

\(0.36\)

\(Kmgatp\)

\(170\!\times\!10 ^{-9}\)

\(Knai_{0}\)

\(9.07\)

\(Knao_{0}\)

\(2.78\!\times\!10 ^{1}\)

\(Knap\)

\(2.24\!\times\!10 ^{2}\)

\(Kxkur\)

\(2.92\!\times\!10 ^{2}\)

\(MgADP\)

\(500\!\times\!10 ^{-4}\)

\(MgATP\)

\(9.8\)

\(Pnak\)

\(3\!\times\!10 ^{1}\)

\(\delta\)

\(-0.15\)

\(eP\)

\(4.2\)

\(k1m\)

\(1.82\!\times\!10 ^{2}\)

\(k1p\)

\(9.49\!\times\!10 ^{2}\)

\(k2m\)

\(3.94\!\times\!10 ^{1}\)

\(k2p\)

\(6.87\!\times\!10 ^{2}\)

\(k3m\)

\(7.93\!\times\!10 ^{4}\)

\(k3p\)

\(1.9\!\times\!10 ^{3}\)

\(k4m\)

\(4\!\times\!10 ^{1}\)

\(k4p\)

\(6.39\!\times\!10 ^{2}\)

\(zk\)

\(1\)

\(GKb\)

\(300\!\times\!10 ^{-5}\)

\(PNab\)

\(375\!\times\!10 ^{-12}\)

\(PCab\)

\(250\!\times\!10 ^{-10}\)

\(GpCa\)

\(500\!\times\!10 ^{-6}\)

\(Esac_{ns}\)

\(-1\!\times\!10 ^{1}\)

\(Gsac_{k}\)

\(1.1\)

\(Gsac_{ns}\)

\(600\!\times\!10 ^{-5}\)

\(\lambda_{max}\)

\(1.1\)

\(amp\)

\(-8\!\times\!10 ^{1}\)

\(duration\)

\(0.5\)

\(BSLmax\)

\(1.12\)

\(BSRmax\)

\(470\!\times\!10 ^{-4}\)

\(KmBSL\)

\(870\!\times\!10 ^{-5}\)

\(KmBSR\)

\(870\!\times\!10 ^{-6}\)

\(cmdnmax\)

\(500\!\times\!10 ^{-4}\)

\(csqnmax\)

\(1\!\times\!10 ^{1}\)

\(kmcmdn\)

\(238\!\times\!10 ^{-5}\)

\(kmcsqn\)

\(0.8\)

\(kmtrpn\)

\(500\!\times\!10 ^{-6}\)

\(trpnmax\)

\(700\!\times\!10 ^{-4}\)

States#

Name

Value

\(CaMKt\)

\(0\)

\(hf\)

\(1\)

\(hs\)

\(1\)

\(hsp\)

\(1\)

\(j\)

\(1\)

\(jp\)

\(1\)

\(m\)

\(0\)

\(hL\)

\(1\)

\(hLp\)

\(1\)

\(mL\)

\(0\)

\(a\)

\(0\)

\(ap\)

\(0\)

\(iF\)

\(1\)

\(iFp\)

\(1\)

\(iS\)

\(1\)

\(iSp\)

\(1\)

\(d\)

\(0\)

\(fcaf\)

\(1\)

\(fcafp\)

\(1\)

\(fcas\)

\(1\)

\(\operatorname{FallingFactorial}\)

\(1\)

\(ffp\)

\(1\)

\(fs\)

\(1\)

\(jca\)

\(1\)

\(nca\)

\(0\)

\(xrf\)

\(0\)

\(xrs\)

\(0\)

\(xk_{1}\)

\(1\)

\(xs_{1}\)

\(0\)

\(xs_{2}\)

\(0\)

\(v\)

\(-8.7\!\times\!10 ^{1}\)

\(Jrelnp\)

\(0\)

\(Jrelp\)

\(0\)

\(cajsr\)

\(1.2\)

\(cansr\)

\(1.2\)

\(cass\)

\(1\!\times\!10 ^{-4}\)

\(ki\)

\(1.45\!\times\!10 ^{2}\)

\(kss\)

\(1.45\!\times\!10 ^{2}\)

\(nai\)

\(7\)

\(nass\)

\(7\)

\(CaTrpn\)

\(0\)

\(Cd\)

\(0\)

\(TmB\)

\(1\)

\(XS\)

\(0\)

\(XW\)

\(0\)

\(Zetas\)

\(0\)

\(Zetaw\)

\(0\)

\(cai\)

\(1\!\times\!10 ^{-4}\)

State expressions#

\[ \frac{dCaMKt}{dt} = - bCaMK CaMKt + aCaMK \left(CaMKb + CaMKt\right) CaMKb \]
\[ \frac{dm}{dt} = \frac{1}{tm} \left(- m + mss\right) \]
\[ \frac{dhf}{dt} = \frac{1}{thf} \left(- hf + hss\right) \]
\[ \frac{dhs}{dt} = \frac{1}{ths} \left(- hs + hss\right) \]
\[ \frac{dj}{dt} = \frac{1}{tj} \left(- j + jss\right) \]
\[ \frac{dhsp}{dt} = \frac{1}{thsp} \left(- hsp + hssp\right) \]
\[ \frac{djp}{dt} = \frac{1}{tjp} \left(- jp + jss\right) \]
\[ \frac{dmL}{dt} = \frac{1}{tmL} \left(- mL + mLss\right) \]
\[ \frac{dhL}{dt} = \frac{1}{thL} \left(- hL + hLss\right) \]
\[ \frac{dhLp}{dt} = \frac{1}{thLp} \left(- hLp + hLssp\right) \]
\[ \frac{da}{dt} = \frac{1}{ta} \left(- a + ass\right) \]
\[ \frac{diF}{dt} = \frac{1}{tiF} \left(- iF + iss\right) \]
\[ \frac{diS}{dt} = \frac{1}{tiS} \left(- iS + iss\right) \]
\[ \frac{dap}{dt} = \frac{1}{ta} \left(- ap + assp\right) \]
\[ \frac{diFp}{dt} = \frac{1}{tiFp} \left(- iFp + iss\right) \]
\[ \frac{diSp}{dt} = \frac{1}{tiSp} \left(- iSp + iss\right) \]
\[ \frac{dd}{dt} = \frac{1}{td} \left(- d + dss\right) \]
\[ \frac{dff}{dt} = \frac{1}{tff} \left(- ff + fss\right) \]
\[ \frac{dfs}{dt} = \frac{1}{tfs} \left(- fs + fss\right) \]
\[ \frac{dfcaf}{dt} = \frac{1}{tfcaf} \left(- fcaf + fcass\right) \]
\[ \frac{dfcas}{dt} = \frac{1}{tfcas} \left(- fcas + fcass\right) \]
\[ \frac{djca}{dt} = \frac{1}{tjca} \left(- jca + fcass\right) \]
\[ \frac{dffp}{dt} = \frac{1}{tffp} \left(- ffp + fss\right) \]
\[ \frac{dfcafp}{dt} = \frac{1}{tfcafp} \left(- fcafp + fcass\right) \]
\[ \frac{dnca}{dt} = k2n anca - km2n nca \]
\[ \frac{dxrf}{dt} = \frac{1}{txrf} \left(- xrf + xrss\right) \]
\[ \frac{dxrs}{dt} = \frac{1}{txrs} \left(- xrs + xrss\right) \]
\[ \frac{dxs_{1}}{dt} = \frac{1}{txs_{1}} \left(- xs_{1} + xs1ss\right) \]
\[ \frac{dxs_{2}}{dt} = \frac{1}{txs_{2}} \left(- xs_{2} + xs2ss\right) \]
\[ \frac{dxk_{1}}{dt} = \frac{1}{txk_{1}} \left(- xk_{1} + xk1ss\right) \]
\[ \frac{dv}{dt} = - Isac_{P k} - Isac_{P ns} - ICaK - \mathcal{I} - ICaNa - ICab - IK_{1} - IKb - IKr - IKs - INa - INaCa_{i} - INaCa_{ss} - INaK - INaL - INab - IpCa - Istim - Ito \]
\[ \frac{dJrelnp}{dt} = \frac{1}{\tau_{rel}} \left(- Jrelnp + Jrel_{inf}\right) \]
\[ \frac{dJrelp}{dt} = \frac{1}{\tau_{relp}} \left(- Jrelp + Jrel_{infp}\right) \]
\[ \frac{dnai}{dt} = \frac{JdiffNa vss}{vmyo} + \frac{Acap}{F vmyo} \left(- INa - INaL - INab - \frac{Isac_{P ns}}{3} - 3 INaCa_{i} - 3 INaK\right) \]
\[ \frac{dnass}{dt} = - JdiffNa + \frac{Acap}{F vss} \left(- ICaNa - 3 INaCa_{ss}\right) \]
\[ \frac{dki}{dt} = \frac{JdiffK vss}{vmyo} + \frac{Acap}{F vmyo} \left(- Isac_{P k} - IK_{1} - IKb - IKr - IKs - Istim - Ito - \frac{Isac_{P ns}}{3} + 2 INaK\right) \]
\[ \frac{dkss}{dt} = - JdiffK - \frac{Acap ICaK}{F vss} \]
\[ \frac{dcass}{dt} = \left(- Jdiff + \frac{Jrel vjsr}{vss} + \frac{0.5 Acap}{F vss} \left(- \mathcal{I} + 2 INaCa_{ss}\right)\right) Bcass \]
\[ \frac{dcansr}{dt} = - \frac{Jtr vjsr}{vnsr} + Jup \]
\[ \frac{dcajsr}{dt} = \left(- Jrel + Jtr\right) Bcajsr \]
\[ \frac{dXS}{dt} = kws XW - XS gammasu - XS ksu \]
\[ \frac{dXW}{dt} = kuw XU - kws XW - XW gammawu - XW kwu \]
\[ \frac{dCaTrpn}{dt} = ktrpn \left(- CaTrpn + \left(\frac{1\!\times\!10 ^{3}}{cat_{50}} cai\right)^{ntrpn} \left(1 - CaTrpn\right)\right) \]
\[\begin{split} \frac{dTmB}{dt} = \left(\begin{cases} CaTrpn^{- \frac{ntm}{2}} & \text{for}\: CaTrpn^{- \frac{ntm}{2}} < 1\!\times\!10 ^{2} \\1\!\times\!10 ^{2} & \text{otherwise} \end{cases}\right) XU kb - ku CaTrpn^{\frac{ntm}{2}} TmB \end{split}\]
\[ \frac{dZetas}{dt} = dLambda As - Zetas cs \]
\[ \frac{dZetaw}{dt} = dLambda Aw - Zetaw cw \]
\[ \frac{dCd}{dt} = \frac{p_{k}}{\eta} \left(- Cd + C\right) \]
\[ \frac{dcai}{dt} = \left(- J_{TRPN} + \frac{Jdiff vss}{vmyo} - \frac{Jup vnsr}{vmyo} + \frac{0.5 Acap}{F vmyo} \left(- ICab - IpCa - \frac{Isac_{P ns}}{3} + 2 INaCa_{i}\right)\right) Bcai \]

Expressions#

\[ vcell = 3.14\!\times\!10 ^{3} L rad^{2} \]
\[ Ageo = 6.28 rad^{2} + 6.28 L rad \]
\[ Acap = 2 Ageo \]
\[ vmyo = 0.68 vcell \]
\[ vnsr = 552\!\times\!10 ^{-4} vcell \]
\[ vjsr = 480\!\times\!10 ^{-5} vcell \]
\[ vss = 200\!\times\!10 ^{-4} vcell \]
\[ CaMKb = \frac{CaMKo \left(1 - CaMKt\right)}{1 + \frac{KmCaM}{cass}} \]
\[ CaMKa = CaMKb + CaMKt \]
\[ mss = \frac{1}{1 + 146\!\times\!10 ^{-5} e^{- 0.13 v}} \]
\[ tm = \frac{1}{9.45 e^{288\!\times\!10 ^{-4} v} + 193\!\times\!10 ^{-7} e^{- 0.17 v}} \]
\[ hss = \frac{1}{1 + 3.03\!\times\!10 ^{5} e^{0.16 v}} \]
\[ thf = \frac{1}{118\!\times\!10 ^{-7} e^{- 0.16 v} + 6.31 e^{493\!\times\!10 ^{-4} v}} \]
\[ ths = \frac{1}{516\!\times\!10 ^{-5} e^{- 357\!\times\!10 ^{-4} v} + 0.37 e^{176\!\times\!10 ^{-4} v}} \]
\[ Ahs = 1 - Ahf \]
\[ h = Ahf hf + Ahs hs \]
\[ jss = hss \]
\[ tj = 2.04 + \frac{1}{0.31 e^{260\!\times\!10 ^{-4} v} + 113\!\times\!10 ^{-9} e^{- 0.12 v}} \]
\[ hssp = \frac{1}{1 + 8.2\!\times\!10 ^{5} e^{0.16 v}} \]
\[ thsp = 3 ths \]
\[ hp = Ahf hf + Ahs hsp \]
\[ tjp = 1.46 tj \]
\[ fINap = \frac{1}{1 + \frac{KmCaMK}{CaMKa}} \]
\[ INa = GNa m^{3} \left(- ENa + v\right) \left(\left(1 - fINap\right) h j + fINap hp jp\right) \]
\[ mLss = \frac{1}{1 + 292\!\times\!10 ^{-6} e^{- 0.19 v}} \]
\[ tmL = tm \]
\[ hLss = \frac{1}{1 + 1.21\!\times\!10 ^{5} e^{0.13 v}} \]
\[ hLssp = \frac{1}{1 + 2.76\!\times\!10 ^{5} e^{0.13 v}} \]
\[ thLp = 3 thL \]
\[ GNaL = 750\!\times\!10 ^{-5} scale_{INaL} \]
\[ fINaLp = \frac{1}{1 + \frac{KmCaMK}{CaMKa}} \]
\[ INaL = \left(- ENa + v\right) \left(\left(1 - fINaLp\right) hL + fINaLp hLp\right) GNaL mL \]
\[ ass = \frac{1}{1 + 2.63 e^{- 675\!\times\!10 ^{-4} v}} \]
\[ ta = \frac{1.05}{\frac{1}{1.21 + 2.26 e^{- 340\!\times\!10 ^{-4} v}} + \frac{3.5}{1 + 3.01\!\times\!10 ^{1} e^{340\!\times\!10 ^{-4} v}}} \]
\[ iss = \frac{1}{1 + 2.19\!\times\!10 ^{3} e^{0.17 v}} \]
\[ tiF = 4.56 + \frac{\delta_{epi}}{0.14 e^{- 1\!\times\!10 ^{-2} v} + 1.63 e^{603\!\times\!10 ^{-4} v}} \]
\[ tiS = 2.36\!\times\!10 ^{1} + \frac{\delta_{epi}}{276\!\times\!10 ^{-6} e^{- 169\!\times\!10 ^{-4} v} + 242\!\times\!10 ^{-4} e^{0.12 v}} \]
\[ AiF = \frac{1}{1 + 0.24 e^{661\!\times\!10 ^{-5} v}} \]
\[ AiS = 1 - AiF \]
\[ i = AiF iF + AiS iS \]
\[ assp = \frac{1}{1 + 5.17 e^{- 675\!\times\!10 ^{-4} v}} \]
\[ dti_{develop} = 1.35 + \frac{1\!\times\!10 ^{-4}}{266\!\times\!10 ^{-7} e^{629\!\times\!10 ^{-4} v} + 4.55\!\times\!10 ^{24} e^{- 4.64 v}} \]
\[ dti_{recover} = 1 - \frac{0.5}{1 + 3.31\!\times\!10 ^{1} e^{500\!\times\!10 ^{-4} v}} \]
\[ tiFp = dti_{develop} dti_{recover} tiF \]
\[ tiSp = dti_{develop} dti_{recover} tiS \]
\[ ip = AiF iFp + AiS iSp \]
\[ fItop = \frac{1}{1 + \frac{KmCaMK}{CaMKa}} \]
\[ Ito = Gto \left(- EK + v\right) \left(\left(1 - fItop\right) a i + ap fItop ip\right) \]
\[ dss = \frac{1}{1 + 0.39 e^{- 0.24 v}} \]
\[ td = 0.6 + \frac{1}{3.53 e^{900\!\times\!10 ^{-4} v} + 0.74 e^{- 500\!\times\!10 ^{-4} v}} \]
\[ fss = \frac{1}{1 + 2\!\times\!10 ^{2} e^{0.27 v}} \]
\[ tff = 7 + \frac{1}{333\!\times\!10 ^{-4} e^{1\!\times\!10 ^{-1} v} + 609\!\times\!10 ^{-6} e^{- 1\!\times\!10 ^{-1} v}} \]
\[ tfs = 1\!\times\!10 ^{3} + \frac{1}{100\!\times\!10 ^{-7} e^{- 0.25 v} + 805\!\times\!10 ^{-7} e^{0.17 v}} \]
\[ Afs = 1 - Aff \]
\[ f = Aff ff + Afs fs \]
\[ fcass = fss \]
\[ tfcaf = 7 + \frac{1}{708\!\times\!10 ^{-4} e^{- 0.14 v} + 226\!\times\!10 ^{-4} e^{0.14 v}} \]
\[ tfcas = 1\!\times\!10 ^{2} + \frac{1}{120\!\times\!10 ^{-6} e^{0.14 v} + 120\!\times\!10 ^{-6} e^{- 0.33 v}} \]
\[ Afcaf = 0.3 + \frac{0.6}{1 + 0.37 e^{1\!\times\!10 ^{-1} v}} \]
\[ Afcas = 1 - Afcaf \]
\[ fca = Afcaf fcaf + Afcas fcas \]
\[ tffp = 2.5 tff \]
\[ fp = Aff ffp + Afs fs \]
\[ tfcafp = 2.5 tfcaf \]
\[ fcap = Afcaf fcafp + Afcas fcas \]
\[ km2n = 1 jca \]
\[ anca = \frac{1}{\left(1 + \frac{Kmn}{cass}\right)^{4} + \frac{k2n}{km2n}} \]
\[ \mathcal{\Phi} = \frac{4 vffrt}{-1 + e^{2 vfrt}} \left(- 0.34 cao + cass e^{2 vfrt}\right) \]
\[ PhiCaNa = \frac{1 vffrt}{-1 + e^{1 vfrt}} \left(- 0.75 nao + 0.75 e^{1 vfrt} nass\right) \]
\[ PhiCaK = \frac{1 vffrt}{-1 + e^{1 vfrt}} \left(- 0.75 ko + 0.75 e^{1 vfrt} kss\right) \]
\[ PCa = 1\!\times\!10 ^{-4} scale_{\mathcal{I}} \]
\[ PCap = 1.1 PCa \]
\[ PCaNa = 125\!\times\!10 ^{-5} PCa \]
\[ PCaK = 357\!\times\!10 ^{-6} PCa \]
\[ PCaNap = 125\!\times\!10 ^{-5} PCap \]
\[ PCaKp = 357\!\times\!10 ^{-6} PCap \]
\[ fICaLp = \frac{1}{1 + \frac{KmCaMK}{CaMKa}} \]
\[ \mathcal{I} = \left(1 - fICaLp\right) \left(\left(1 - nca\right) f + fca jca nca\right) PCa \mathcal{\Phi} d + \left(\left(1 - nca\right) fp + fcap jca nca\right) PCap \mathcal{\Phi} d fICaLp \]
\[ ICaNa = \left(1 - fICaLp\right) \left(\left(1 - nca\right) f + fca jca nca\right) PCaNa PhiCaNa d + \left(\left(1 - nca\right) fp + fcap jca nca\right) PCaNap PhiCaNa d fICaLp \]
\[ ICaK = \left(1 - fICaLp\right) \left(\left(1 - nca\right) f + fca jca nca\right) PCaK PhiCaK d + \left(\left(1 - nca\right) fp + fcap jca nca\right) PCaKp PhiCaK d fICaLp \]
\[ xrss = \frac{1}{1 + 0.29 e^{- 0.15 v}} \]
\[ txrf = 1.3\!\times\!10 ^{1} + \frac{1}{102\!\times\!10 ^{-6} e^{0.26 v} + 430\!\times\!10 ^{-6} e^{- 491\!\times\!10 ^{-4} v}} \]
\[ txrs = 1.86 + \frac{1}{592\!\times\!10 ^{-6} e^{0.14 v} + 355\!\times\!10 ^{-7} e^{- 386\!\times\!10 ^{-4} v}} \]
\[ Axrf = \frac{1}{1 + 4.2 e^{262\!\times\!10 ^{-4} v}} \]
\[ Axrs = 1 - Axrf \]
\[ xr = Axrf xrf + Axrs xrs \]
\[ rkr = \frac{1}{\left(1 + 2.08 e^{133\!\times\!10 ^{-4} v}\right) \left(1 + 0.72 e^{333\!\times\!10 ^{-4} v}\right)} \]
\[ GKr = 460\!\times\!10 ^{-4} scale_{IKr} \]
\[ IKr = 0.43 \sqrt{ko} \left(- EK + v\right) GKr rkr xr \]
\[ xs1ss = \frac{1}{1 + 0.27 e^{- 0.11 v}} \]
\[ txs_{1} = 8.17\!\times\!10 ^{2} + \frac{1}{350\!\times\!10 ^{-5} e^{562\!\times\!10 ^{-4} v} + 518\!\times\!10 ^{-6} e^{- 435\!\times\!10 ^{-5} v}} \]
\[ xs2ss = xs1ss \]
\[ txs_{2} = \frac{1}{226\!\times\!10 ^{-5} e^{- 323\!\times\!10 ^{-4} v} + 821\!\times\!10 ^{-6} e^{500\!\times\!10 ^{-4} v}} \]
\[ KsCa = 1 + \frac{0.6}{1 + 648\!\times\!10 ^{-9} \left(\frac{1}{cai}\right)^{1.4}} \]
\[ GKs = 340\!\times\!10 ^{-5} scale_{IKs} \]
\[ IKs = \left(- EKs + v\right) GKs KsCa xs_{1} xs_{2} \]
\[ xk1ss = \frac{1}{1 + e^{\frac{-1.45\!\times\!10 ^{2} - v - 2.55 ko}{3.81 + 1.57 ko}}} \]
\[ txk_{1} = \frac{1.22\!\times\!10 ^{2}}{194\!\times\!10 ^{-5} e^{- 491\!\times\!10 ^{-4} v} + 3.04\!\times\!10 ^{1} e^{144\!\times\!10 ^{-4} v}} \]
\[ rk_{1} = \frac{1}{1 + 6.92\!\times\!10 ^{4} e^{0.10 v - 0.27 ko}} \]
\[ GK_{1} = 0.19 scale_{IK1} \]
\[ IK_{1} = \sqrt{ko} \left(- EK + v\right) GK_{1} rk_{1} xk_{1} \]
\[ a_{rel} = 0.5 bt \]
\[ Jrel_{inf} = - \frac{\mathcal{I} a_{rel}}{1 + 2.56\!\times\!10 ^{1} \left(\frac{1}{cajsr}\right)^{8}} \]
\[ \tau_{rel tmp} = \frac{bt}{1 + \frac{123\!\times\!10 ^{-4}}{cajsr}} \]
\[\begin{split} \tau_{rel} = \begin{cases} 0.00 & \text{for}\: \tau_{rel tmp} < 0.00 \\\tau_{rel tmp} & \text{otherwise} \end{cases} \end{split}\]
\[ btp = 1.25 bt \]
\[ a_{relp} = 0.5 btp \]
\[ Jrel_{infp} = - \frac{\mathcal{I} a_{relp}}{1 + 2.56\!\times\!10 ^{1} \left(\frac{1}{cajsr}\right)^{8}} \]
\[ \tau_{relp tmp} = \frac{btp}{1 + \frac{123\!\times\!10 ^{-4}}{cajsr}} \]
\[\begin{split} \tau_{relp} = \begin{cases} 0.00 & \text{for}\: \tau_{relp tmp} < 0.00 \\\tau_{relp tmp} & \text{otherwise} \end{cases} \end{split}\]
\[ fJrelp = \frac{1}{1 + \frac{KmCaMK}{CaMKa}} \]
\[ Jrel = \left(1 - fJrelp\right) Jrelnp + Jrelp fJrelp \]
\[ Bcass = \frac{1}{1 + \frac{BSLmax KmBSL}{\left(KmBSL + cass\right)^{2}} + \frac{BSRmax KmBSR}{\left(KmBSR + cass\right)^{2}}} \]
\[ Bcajsr = \frac{1}{1 + \frac{csqnmax kmcsqn}{\left(kmcsqn + cajsr\right)^{2}}} \]
\[\begin{split} XS_{max} = \begin{cases} XS & \text{for}\: XS > 0 \\0 & \text{otherwise} \end{cases} \end{split}\]
\[\begin{split} XW_{max} = \begin{cases} XW & \text{for}\: XW > 0 \\0 & \text{otherwise} \end{cases} \end{split}\]
\[\begin{split} CaTrpn_{max} = \begin{cases} CaTrpn & \text{for}\: CaTrpn > 0 \\0 & \text{otherwise} \end{cases} \end{split}\]
\[ kwu = - kws + kuw \left(-1 + \frac{1}{rw}\right) \]
\[ ksu = kws rw \left(-1 + \frac{1}{rs}\right) \]
\[ Aw = \frac{Tot_{A} rs}{rs + rw \left(1 - rs\right)} \]
\[ As = Aw \]
\[ cw = \frac{kuw \phi}{rw} \left(1 - rw\right) \]
\[ cs = \frac{kws \phi}{rs} rw \left(1 - rs\right) \]
\[\begin{split} \lambda_{min12} = \begin{cases} lmbda & \text{for}\: lmbda < 1.2 \\1.2 & \text{otherwise} \end{cases} \end{split}\]
\[\begin{split} \lambda_{min087} = \begin{cases} \lambda_{min12} & \text{for}\: \lambda_{min12} < 0.87 \\0.87 & \text{otherwise} \end{cases} \end{split}\]
\[ h_{\lambda prima} = 1 + B_{0} \left(-1.87 + \lambda_{min087} + \lambda_{min12}\right) \]
\[\begin{split} h_{\lambda} = \begin{cases} h_{\lambda prima} & \text{for}\: h_{\lambda prima} > 0 \\0 & \text{otherwise} \end{cases} \end{split}\]
\[ XU = 1 - TmB - XS - XW \]
\[ gammawu = gammaw \left|{Zetaw}\right| \]
\[\begin{split} gammasu = gammas \left(\begin{cases} Zetas \left(Zetas > 0\right) & \text{for}\: Zetas \left(Zetas > 0\right) > \left(-1 - Zetas\right) \left(Zetas < -1\right) \\\left(-1 - Zetas\right) \left(Zetas < -1\right) & \text{otherwise} \end{cases}\right) \end{split}\]
\[ cat_{50} = cat_{50 ref} + B_{1} \left(-1 + \lambda_{min12}\right) \]
\[ kb = \frac{ku Trpn_{50}^{ntm}}{1 - rs - rw \left(1 - rs\right)} \]
\[ Ta = \frac{Tref h_{\lambda}}{rs} \left(\left(1 + Zetas\right) XS + XW Zetaw\right) \]
\[ C = -1 + \lambda_{min12} \]
\[ dCd = - Cd + C \]
\[\begin{split} \eta = \begin{cases} etas & \text{for}\: dCd < 0 \\etal & \text{otherwise} \end{cases} \end{split}\]
\[ Fd = dCd \eta \]
\[ F_{1} = -1 + e^{p_{b} C} \]
\[ Tp = p_{a} \left(F_{1} + Fd\right) \]
\[ Ttot = Ta + Tp \]
\[ Bcai = \frac{1}{1 + \frac{cmdnmax kmcmdn}{\left(kmcmdn + cai\right)^{2}}} \]
\[ J_{TRPN} = trpnmax \frac{d}{d t} CaTrpn \]
\[ ENa = \frac{R T}{F} \log{\left (\frac{nao}{nai} \right )} \]
\[ EK = \frac{R T}{F} \log{\left (\frac{ko}{ki} \right )} \]
\[ EKs = \frac{R T}{F} \log{\left (\frac{ko + PKNa nao}{PKNa nai + ki} \right )} \]
\[ vffrt = \frac{F^{2} v}{R T} \]
\[ vfrt = \frac{F v}{R T} \]
\[ hca = e^{\frac{F qca v}{R T}} \]
\[ hna = e^{\frac{F qna v}{R T}} \]
\[ h_{1 i} = 1 + \frac{nai}{kna_{3}} \left(1 + hna\right) \]
\[ h_{2 i} = \frac{hna nai}{kna_{3} h_{1 i}} \]
\[ h_{3 i} = \frac{1}{h_{1 i}} \]
\[ h_{4 i} = 1 + \frac{nai}{kna_{1}} \left(1 + \frac{nai}{kna_{2}}\right) \]
\[ h_{5 i} = \frac{nai^{2}}{kna_{1} kna_{2} h_{4 i}} \]
\[ h_{6 i} = \frac{1}{h_{4 i}} \]
\[ h_{7 i} = 1 + \frac{nao}{kna_{3}} \left(1 + \frac{1}{hna}\right) \]
\[ h_{8 i} = \frac{nao}{kna_{3} h_{7 i} hna} \]
\[ h_{9 i} = \frac{1}{h_{7 i}} \]
\[ h_{10 i} = 1 + kasymm + \frac{nao}{kna_{1}} \left(1 + \frac{nao}{kna_{2}}\right) \]
\[ h_{11 i} = \frac{nao^{2}}{kna_{1} kna_{2} h_{10 i}} \]
\[ h_{12 i} = \frac{1}{h_{10 i}} \]
\[ k_{1 i} = cao kcaon h_{12 i} \]
\[ k_{2 i} = kcaoff \]
\[ k3p_{i} = wca h_{9 i} \]
\[ k3pp_{i} = wnaca h_{8 i} \]
\[ k_{3 i} = k3p_{i} + k3pp_{i} \]
\[ k4p_{i} = \frac{wca}{hca} h_{3 i} \]
\[ k4pp_{i} = wnaca h_{2 i} \]
\[ k_{4 i} = k4p_{i} + k4pp_{i} \]
\[ k_{5 i} = kcaoff \]
\[ k_{6 i} = kcaon cai h_{6 i} \]
\[ k_{7 i} = wna h_{2 i} h_{5 i} \]
\[ k_{8 i} = wna h_{11 i} h_{8 i} \]
\[ x_{1 i} = \left(k_{2 i} + k_{3 i}\right) k_{5 i} k_{7 i} + \left(k_{6 i} + k_{7 i}\right) k_{2 i} k_{4 i} \]
\[ x_{2 i} = \left(k_{1 i} + k_{8 i}\right) k_{4 i} k_{6 i} + \left(k_{4 i} + k_{5 i}\right) k_{1 i} k_{7 i} \]
\[ x_{3 i} = \left(k_{2 i} + k_{3 i}\right) k_{6 i} k_{8 i} + \left(k_{6 i} + k_{7 i}\right) k_{1 i} k_{3 i} \]
\[ x_{4 i} = \left(k_{1 i} + k_{8 i}\right) k_{3 i} k_{5 i} + \left(k_{4 i} + k_{5 i}\right) k_{2 i} k_{8 i} \]
\[ E_{1 i} = \frac{x_{1 i}}{x_{1 i} + x_{2 i} + x_{3 i} + x_{4 i}} \]
\[ E_{2 i} = \frac{x_{2 i}}{x_{1 i} + x_{2 i} + x_{3 i} + x_{4 i}} \]
\[ E_{3 i} = \frac{x_{3 i}}{x_{1 i} + x_{2 i} + x_{3 i} + x_{4 i}} \]
\[ E_{4 i} = \frac{x_{4 i}}{x_{1 i} + x_{2 i} + x_{3 i} + x_{4 i}} \]
\[ allo_{i} = \frac{1}{1 + \left(\frac{KmCaAct}{cai}\right)^{2}} \]
\[ zna = 1 \]
\[ JncxNa_{i} = E_{3 i} k4pp_{i} - E_{2 i} k3pp_{i} + 3 E_{4 i} k_{7 i} - 3 E_{1 i} k_{8 i} \]
\[ JncxCa_{i} = E_{2 i} k_{2 i} - E_{1 i} k_{1 i} \]
\[ INaCa_{i} = 0.8 Gncx \left(zca JncxCa_{i} + zna JncxNa_{i}\right) allo_{i} \]
\[ h_{1} = 1 + \frac{nass}{kna_{3}} \left(1 + hna\right) \]
\[ h_{2} = \frac{hna nass}{kna_{3} h_{1}} \]
\[ h_{3} = \frac{1}{h_{1}} \]
\[ h_{4} = 1 + \frac{nass}{kna_{1}} \left(1 + \frac{nass}{kna_{2}}\right) \]
\[ h_{5} = \frac{nass^{2}}{kna_{1} kna_{2} h_{4}} \]
\[ h_{6} = \frac{1}{h_{4}} \]
\[ h_{7} = 1 + \frac{nao}{kna_{3}} \left(1 + \frac{1}{hna}\right) \]
\[ h_{8} = \frac{nao}{kna_{3} h_{7} hna} \]
\[ h_{9} = \frac{1}{h_{7}} \]
\[ h_{10} = 1 + kasymm + \frac{nao}{kna_{1}} \left(1 + \frac{nao}{kna_{2}}\right) \]
\[ h_{11} = \frac{nao^{2}}{kna_{1} kna_{2} h_{10}} \]
\[ h_{12} = \frac{1}{h_{10}} \]
\[ k_{1} = cao kcaon h_{12} \]
\[ k_{2} = kcaoff \]
\[ k3p_{ss} = wca h_{9} \]
\[ k3pp = wnaca h_{8} \]
\[ k_{3} = k3p_{ss} + k3pp \]
\[ k4p_{ss} = \frac{wca h_{3}}{hca} \]
\[ k4pp = wnaca h_{2} \]
\[ k_{4} = k4p_{ss} + k4pp \]
\[ k_{5} = kcaoff \]
\[ k_{6} = kcaon cass h_{6} \]
\[ k_{7} = wna h_{2} h_{5} \]
\[ k_{8} = wna h_{11} h_{8} \]
\[ x_{1 ss} = \left(k_{2} + k_{3}\right) k_{5} k_{7} + \left(k_{6} + k_{7}\right) k_{2} k_{4} \]
\[ x_{2 ss} = \left(k_{1} + k_{8}\right) k_{4} k_{6} + \left(k_{4} + k_{5}\right) k_{1} k_{7} \]
\[ x_{3 ss} = \left(k_{2} + k_{3}\right) k_{6} k_{8} + \left(k_{6} + k_{7}\right) k_{1} k_{3} \]
\[ x_{4 ss} = \left(k_{1} + k_{8}\right) k_{3} k_{5} + \left(k_{4} + k_{5}\right) k_{2} k_{8} \]
\[ E_{1 ss} = \frac{x_{1 ss}}{x_{1 ss} + x_{2 ss} + x_{3 ss} + x_{4 ss}} \]
\[ E_{2 ss} = \frac{x_{2 ss}}{x_{1 ss} + x_{2 ss} + x_{3 ss} + x_{4 ss}} \]
\[ E_{3 ss} = \frac{x_{3 ss}}{x_{1 ss} + x_{2 ss} + x_{3 ss} + x_{4 ss}} \]
\[ E_{4 ss} = \frac{x_{4 ss}}{x_{1 ss} + x_{2 ss} + x_{3 ss} + x_{4 ss}} \]
\[ allo_{ss} = \frac{1}{1 + \left(\frac{KmCaAct}{cass}\right)^{2}} \]
\[ JncxNa_{ss} = E_{3 ss} k4pp - E_{2 ss} k3pp + 3 E_{4 ss} k_{7} - 3 E_{1 ss} k_{8} \]
\[ JncxCa_{ss} = E_{2 ss} k_{2} - E_{1 ss} k_{1} \]
\[ INaCa_{ss} = 0.2 Gncx \left(zca JncxCa_{ss} + zna JncxNa_{ss}\right) allo_{ss} \]
\[ Knai = Knai_{0} e^{\frac{0.33 F \delta v}{R T}} \]
\[ Knao = Knao_{0} e^{\frac{0.33 F v}{R T} \left(1 - \delta\right)} \]
\[ P = \frac{eP}{1 + \frac{H}{Khp} + \frac{nai}{Knap} + \frac{ki}{Kxkur}} \]
\[ a_{1} = \frac{k1p \left(\frac{nai}{Knai}\right)^{3}}{-1 + \left(1 + \frac{ki}{Kki}\right)^{2} + \left(1 + \frac{nai}{Knai}\right)^{3}} \]
\[ b_{1} = MgADP k1m \]
\[ a_{2} = k2p \]
\[ b_{2} = \frac{k2m \left(\frac{nao}{Knao}\right)^{3}}{-1 + \left(1 + \frac{ko}{Kko}\right)^{2} + \left(1 + \frac{nao}{Knao}\right)^{3}} \]
\[ a_{3} = \frac{k3p \left(\frac{ko}{Kko}\right)^{2}}{-1 + \left(1 + \frac{ko}{Kko}\right)^{2} + \left(1 + \frac{nao}{Knao}\right)^{3}} \]
\[ b_{3} = \frac{H k3m P}{1 + \frac{MgATP}{Kmgatp}} \]
\[ a_{4} = \frac{MgATP k4p}{Kmgatp \left(1 + \frac{MgATP}{Kmgatp}\right)} \]
\[ b_{4} = \frac{k4m \left(\frac{ki}{Kki}\right)^{2}}{-1 + \left(1 + \frac{ki}{Kki}\right)^{2} + \left(1 + \frac{nai}{Knai}\right)^{3}} \]
\[ x_{1} = a_{1} a_{2} a_{4} + a_{1} a_{2} b_{3} + a_{2} b_{3} b_{4} + b_{2} b_{3} b_{4} \]
\[ x_{2} = a_{1} a_{2} a_{3} + a_{2} a_{3} b_{4} + a_{3} b_{1} b_{4} + b_{1} b_{2} b_{4} \]
\[ x_{3} = a_{2} a_{3} a_{4} + a_{3} a_{4} b_{1} + a_{4} b_{1} b_{2} + b_{1} b_{2} b_{3} \]
\[ x_{4} = a_{1} a_{3} a_{4} + a_{1} a_{4} b_{2} + a_{1} b_{2} b_{3} + b_{2} b_{3} b_{4} \]
\[ E1 = \frac{x_{1}}{x_{1} + x_{2} + x_{3} + x_{4}} \]
\[ E_{2} = \frac{x_{2}}{x_{1} + x_{2} + x_{3} + x_{4}} \]
\[ E_{3} = \frac{x_{3}}{x_{1} + x_{2} + x_{3} + x_{4}} \]
\[ E_{4} = \frac{x_{4}}{x_{1} + x_{2} + x_{3} + x_{4}} \]
\[ JnakNa = 3 E_{1} a_{3} - 3 E_{2} b_{3} \]
\[ JnakK = 2 E_{4} b_{1} - 2 E_{3} a_{1} \]
\[ INaK = Pnak \left(zk JnakK + zna JnakNa\right) \]
\[ xkb = \frac{1}{1 + 2.2 e^{- 545\!\times\!10 ^{-4} v}} \]
\[ IKb = GKb \left(- EK + v\right) xkb \]
\[ INab = \frac{PNab vffrt}{-1 + e^{vfrt}} \left(- nao + e^{vfrt} nai\right) \]
\[ ICab = \frac{4 PCab vffrt}{-1 + e^{2 vfrt}} \left(- 0.34 cao + cai e^{2 vfrt}\right) \]
\[ IpCa = \frac{GpCa cai}{500\!\times\!10 ^{-6} + cai} \]
\[ Isac_{P ns} = 0 \]
\[ Isac_{P k} = 0 \]
\[ Istim = amp \left(t \leq duration\right) \]
\[ JdiffNa = 0.5 nass - 0.5 nai \]
\[ JdiffK = 0.5 kss - 0.5 ki \]
\[ Jdiff = 5 cass - 5 cai \]
\[ Jupnp = \frac{438\!\times\!10 ^{-5} cai}{920\!\times\!10 ^{-6} + cai} \]
\[ Jupp = \frac{120\!\times\!10 ^{-4} cai}{750\!\times\!10 ^{-6} + cai} \]
\[ fJupp = \frac{1}{1 + \frac{KmCaMK}{CaMKa}} \]
\[ Jleak = 262\!\times\!10 ^{-6} cansr \]
\[ Jup = - Jleak + \left(1 - fJupp\right) Jupnp + Jupp fJupp \]
\[ Jtr = 1\!\times\!10 ^{-2} cansr - 1\!\times\!10 ^{-2} cajsr \]

References#

[LPHS+17]

Sander Land, So-Jin Park-Holohan, Nicolas P Smith, Cristobal G Dos Remedios, Jonathan C Kentish, and Steven A Niederer. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 106:68–83, 2017.

[OHaraViragVarroR11]

Thomas O'Hara, László Virág, András Varró, and Yoram Rudy. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS computational biology, 7(5):e1002061, 2011.