Spatial convergence test#
import json
import numpy as np
from collections import defaultdict
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import requests
pd.options.display.max_columns = 5
headers = {
"Accept": "application/vnd.github+json",
"X-GitHub-Api-Version": "2022-11-28",
}
print("Get existing data from gist")
response = requests.get(
"https://api.github.com/gists/73fa6531f28da2b3633a7ddaca38a7cd",
headers=headers,
)
data = json.loads(response.json()["files"]["convergence_test.json"]["content"])
Get existing data from gist
runs = set()
all_results = defaultdict(list)
spatial_convergence = []
for git_hash, d in data.items():
runs |= set(d.keys())
if "dx0.1_dt0.05" not in d:
# We have not spatial convergence data
continue
for key1, d1 in d.items():
if "dt0.05" not in key1:
continue # Only select data with "dt0.05"
for key, value in d1.items():
all_results[key].append(value)
N = max(len(v) for v in all_results.values())
results = {}
for k, v in all_results.items():
print(k, len(v))
if len(v) == N:
results[k] = v
df = pd.DataFrame(results)
df["timestamp"] = pd.to_datetime(df["timestamp"])
df
import_time 36
timestamp 36
simcardems_version 36
dt 36
dx 36
sha 36
coupling_type 18
num_cells_mechanics 36
num_vertices_mechanics 36
num_cells_ep 36
num_vertices_ep 36
create_runner_time 36
solve_time 36
APD40 36
APD50 36
APD90 36
triangulation 36
Vpeak 36
Vmin 36
dvdt_max 18
maxCa 36
ampCa 36
CaTD50 36
CaTD80 36
maxTa 36
ampTa 36
ttp_Ta 36
rt50_Ta 36
rt95_Ta 36
maxlmbda 36
minlmbda 36
ttplmbda 36
lmbdaD50 36
lmbdaD80 36
lmbdaD90 36
rt50_lmbda 36
rt95_lmbda 36
max_displacement_norm 36
min_displacement_norm 18
time_to_max_displacement_norm 36
time_to_min_displacement_norm 18
max_displacement_x 36
min_displacement_x 18
time_to_max_displacement_x 36
time_to_min_displacement_x 18
max_displacement_y 36
min_displacement_y 18
time_to_max_displacement_y 36
time_to_min_displacement_y 18
max_displacement_z 36
min_displacement_z 18
time_to_max_displacement_z 36
time_to_min_displacement_z 18
dvdt 18
CaTD90 18
rel_max_displacement_norm 18
max_displacement_perc_norm 18
rel_max_displacement_perc_norm 18
rel_max_displacement_x 18
max_displacement_perc_x 18
rel_max_displacement_perc_x 18
rel_max_displacement_y 18
max_displacement_perc_y 18
rel_max_displacement_perc_y 18
rel_max_displacement_z 18
max_displacement_perc_z 18
rel_max_displacement_perc_z 18
import_time | timestamp | ... | max_displacement_z | time_to_max_displacement_z | |
---|---|---|---|---|---|
0 | 1.000000e-06 | 2023-10-26 09:55:43.116594 | ... | 0.104235 | 137.05 |
1 | 7.000000e-07 | 2023-10-26 09:55:25.319508 | ... | 0.104234 | 136.05 |
2 | 7.600000e-06 | 2023-10-26 09:55:49.558780 | ... | 0.104241 | 137.05 |
3 | 8.000000e-07 | 2023-09-24 20:53:35.963792 | ... | 0.097217 | 138.05 |
4 | 1.000000e-06 | 2023-09-24 20:53:48.833177 | ... | 0.097159 | 138.05 |
5 | 9.000000e-07 | 2023-09-24 20:54:02.914676 | ... | 0.096905 | 139.05 |
6 | 9.000000e-07 | 2023-09-11 12:49:33.990384 | ... | 0.097217 | 138.05 |
7 | 9.000000e-07 | 2023-09-11 12:49:36.888188 | ... | 0.097159 | 138.05 |
8 | 9.000000e-07 | 2023-09-11 12:49:33.033569 | ... | 0.096905 | 139.05 |
9 | 8.000000e-07 | 2023-06-27 12:42:45.253835 | ... | 0.097159 | 138.05 |
10 | 1.100000e-06 | 2023-06-27 12:42:49.266930 | ... | 0.097217 | 138.05 |
11 | 1.100000e-06 | 2023-06-27 12:42:43.474076 | ... | 0.096905 | 139.05 |
12 | 1.600000e-06 | 2023-06-05 10:35:21.889433 | ... | 0.096905 | 139.05 |
13 | 1.000000e-06 | 2023-06-05 10:34:58.182515 | ... | 0.097159 | 138.05 |
14 | 8.000000e-07 | 2023-06-05 10:34:56.082409 | ... | 0.097217 | 138.05 |
15 | 1.000000e-06 | 2023-05-23 19:54:03.785756 | ... | 0.097159 | 138.05 |
16 | 1.000000e-06 | 2023-05-23 19:54:26.746227 | ... | 0.097217 | 138.05 |
17 | 1.700000e-06 | 2023-05-23 19:54:21.676974 | ... | 0.096905 | 139.05 |
18 | 1.200000e-06 | 2023-05-22 18:51:32.688650 | ... | 0.097159 | 0.05 |
19 | 7.000000e-07 | 2023-05-22 18:51:29.002098 | ... | 0.097217 | 0.05 |
20 | 1.000000e-06 | 2023-05-22 18:51:20.047152 | ... | 0.096905 | 0.05 |
21 | 1.300000e-06 | 2023-05-16 08:33:54.547115 | ... | 0.097159 | 0.05 |
22 | 1.000000e-06 | 2023-05-16 08:34:13.875302 | ... | 0.097217 | 0.05 |
23 | 1.000000e-06 | 2023-05-16 08:33:56.392320 | ... | 0.096905 | 0.05 |
24 | 1.200000e-06 | 2023-05-10 07:52:46.302512 | ... | 0.096905 | 0.05 |
25 | 1.000000e-06 | 2023-05-10 07:52:54.342434 | ... | 0.097159 | 0.05 |
26 | 9.000000e-07 | 2023-05-10 07:52:36.195420 | ... | 0.097217 | 0.05 |
27 | 9.000000e-07 | 2023-04-12 20:33:25.203391 | ... | 0.096905 | 0.05 |
28 | 1.001000e-06 | 2023-04-12 20:33:25.502552 | ... | 0.097217 | 0.05 |
29 | 1.000000e-06 | 2023-04-12 20:33:32.537703 | ... | 0.097159 | 0.05 |
30 | 1.100000e-06 | 2023-04-12 17:17:24.396818 | ... | 0.096905 | 0.05 |
31 | 1.000000e-06 | 2023-04-12 17:17:24.948740 | ... | 0.097217 | 0.05 |
32 | 1.000000e-06 | 2023-04-12 17:17:26.820219 | ... | 0.097159 | 0.05 |
33 | 1.300000e-06 | 2023-04-12 09:53:34.139318 | ... | 0.096905 | 0.05 |
34 | 8.000000e-07 | 2023-04-12 09:53:30.436212 | ... | 0.097217 | 0.05 |
35 | 1.000000e-06 | 2023-04-12 09:53:31.010237 | ... | 0.097159 | 0.05 |
36 rows × 43 columns
df["timestamp"]
df.keys()
df["dx"].unique()
array([0.4, 0.1, 0.2])
def get_ylim(values):
if np.isclose(values, 1).all():
return (0.99, 1.01)
y_max = np.max(values)
y_min = np.min(values)
d_max = y_max - 1
d_min = 1 - y_min
d = max(d_min, d_max) + 0.025
return (1 - d, 1 + d)
dxs = df["dx"].unique()
DX = np.median(dxs) # Choose the dx in the middle as the one to compare with
dxs
array([0.4, 0.1, 0.2])
columns = [c for c in df.columns if c not in ["timestamp", "simcardems_version", "sha", "dx", "dt"]]
git_hash = df["sha"]
versions = df["simcardems_version"]
dxs = df["dx"].unique()
dates = [t.date() for t in df["timestamp"]]
df_DX = df[df["dx"] == DX]
df_DX.sort_values(by="timestamp")
fig = make_subplots(
rows=len(columns),
cols=1,
subplot_titles=columns,
y_title="Percentage deviation from median case",
shared_xaxes=True,
)
yranges = []
colors = ["red", "green", "blue"]
for color, dx in zip(colors, sorted(dxs)):
df_dx = df[df["dx"] == dx]
df_dx.sort_values(by="timestamp")
git_hash = df_dx["sha"]
versions = df_dx["simcardems_version"]
dates = [t.date() for t in df_dx["timestamp"]]
text = []
for h, v, t in zip(git_hash, versions, dates):
text.append(
"\n".join(
[
f"<br>Git Hash: {h}</br>",
f"<br>Version: {v}</br>",
f"<br>Timestamp {t}</br>",
]
)
)
for i, c in enumerate(columns):
y = df_dx[c].to_numpy() / df_DX[c].to_numpy()
row = i + 1
col = 1
showlegend = i == 0
fig.add_trace(
go.Scatter(
x=df_dx["timestamp"],
y=y,
text=text,
hovertemplate="%{text}",
name=f"dx={dx}",
legendgroup=str(dx),
showlegend=i == 0,
marker_color=color,
),
row=row,
col=col,
)
fig.update_yaxes(range=get_ylim(y), row=row, col=col)
fig.update_layout(height=5000, showlegend=True)
fig.show()